• Title/Summary/Keyword: 음성인식 후처리

Search Result 131, Processing Time 0.03 seconds

Class Language Model based on Word Embedding and POS Tagging (워드 임베딩과 품사 태깅을 이용한 클래스 언어모델 연구)

  • Chung, Euisok;Park, Jeon-Gue
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.7
    • /
    • pp.315-319
    • /
    • 2016
  • Recurrent neural network based language models (RNN LM) have shown improved results in language model researches. The RNN LMs are limited to post processing sessions, such as the N-best rescoring step of the wFST based speech recognition. However, it has considerable vocabulary problems that require large computing powers for the LM training. In this paper, we try to find the 1st pass N-gram model using word embedding, which is the simplified deep neural network. The class based language model (LM) can be a way to approach to this issue. We have built class based vocabulary through word embedding, by combining the class LM with word N-gram LM to evaluate the performance of LMs. In addition, we propose that part-of-speech (POS) tagging based LM shows an improvement of perplexity in all types of the LM tests.

Performance Improvement of Word Spotting Using State Weighting of HMM (HMM의 상태별 가중치를 이용한 핵심어 검출의 성능 향상)

  • 최동진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.305-308
    • /
    • 1998
  • 본 논문에서는 핵심어 검출의 성능을 향상시키기 위한 새로운 후처리 방법을 제안한다. 일반적으로 핵심어 검출 시스템에 의해 검출된 상위 n개의 후보 단어들의 우도(likelihood)는 비슷한 경우가 많다. 따라서, 한 음성구간에 대해 음향학적으로 유사한 핵심어들간의 오인식 가능성이 높아진다. 그러나 기존의 핵심어 검출에 사용된 후처리 방법은 음성의 모든 구간에 같은 비중을 두고 우도를 평가하므로 비슷한 음향학적 특징을 가지는 유사한 핵심어들의 비교에 적합하지 못하다. 이를 해결하기 위하여, 본 논문에서는 후보단어들의 부분적인 음향학적 특징 차이에 기반한 가중치를 우도 계산 시에 반영함으로써 보다 변별력을 높이는 알고리즘을 제안한다. 실험 결과, 제안된 방법을 이용하여 유사한 후보단어들간의 변별력을 높일 수 있었고, 인식율이 93%일 때, 우도비검사 방법에 비해 19.6%의 false alarm rate을 감소시킬 수 있었다.

  • PDF

Speech Signal Processing for Performance Improvement of Text-Based Video Segmentation (문자정보 기반 비디오 분할에서 성능 향상을 위한 음성신호처리)

  • 이용주;손종목;강경옥;배건성
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.187-191
    • /
    • 1999
  • 비디오 프로그램에서 영상 내에 포함되어 있는 문자정보는 동영상의 내용 검색 및 색인을 위한 비디오 분할에 사용될 수 있다. 일반적으로 장면 내에 포함되어 있는 문자들은 해상도가 낮고 글자 크기와 형태가 다양하기 때문에 추출과 인식이 어려울 뿐만 아니라 의도하지 않은 배경화면의 문자인 경우도 많기 때문에 내용기반 검색에는 사용되기가 어렵다. 그러나 비디오 내에 포함된 문자정보가 나타나는 시작 프레임과 끝나는 프레임을 검출하여 비디오 프로그램을 분할함으로써 내용기반요약정보를 만들 수 있으며, 동영상의 내용 검색 및 색인에 사용할 수 있다. 일반적으로 문자정보의 추출에 의해서 비디오를 분할할 때 음성정보는 전혀 고려되지 않으므로 분할된 비디오 정보를 재생할 경우음성신호가 단어 또는 어절/음절의 임의의 점에서 시작되고 끝나게 되어 듣기에 부자연스럽게 된다 따라서 본 논문에서는 뉴스방송의 비디오 프로그램에서 문자정보가 포함되어 는 비디오의 시작 프레임과 끝 프레임을 중심으로 그에 대응되는 구간의 음성신호를 검출한 후 이를 적절히 처리하여 분할 된 비디오를 재생할 때 음성신호가 보다 자연스럽게 들릴 수 있도록 하는 방법에 대해 연구하였다.

  • PDF

Speech emotion recognition based on CNN - LSTM Model (CNN - LSTM 모델 기반 음성 감정인식)

  • Yoon, SangHyeuk;Jeon, Dayun;Park, Neungsoo
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.939-941
    • /
    • 2021
  • 사람은 표정, 음성, 말 등을 통해 감정을 표출한다. 본 논문에서는 화자의 음성데이터만을 사용하여 감정을 분류하는 방법을 제안한다. 멜 스펙트로그램(Mel-Spectrogram)을 이용하여 음성데이터를 시간에 따른 주파수 영역으로 변화한다. 멜 스펙트로그램으로 변환된 데이터를 CNN을 이용하여 특징 벡터화한 후 Bi-Directional LSTM을 이용하여 화자의 발화 시간 동안 변화되는 감정을 분석한다. 마지막으로 완전 연결 네트워크를 통해 전체 감정을 분류한다. 감정은 Anger, Excitement, Fear, Happiness, Sadness, Neutral로, 총 6가지로 분류하였으며 데이터베이스로는 상명대 연구팀에서 구축한 한국어 음성 감정 데이터베이스를 사용하였다. 실험 결과 논문에서 제안한 CNN-LSTM 모델의 정확도는 88.89%로 측정되었다.

Real-time Text Analysis with Dialogue State Tracking and Summarizing to Assist Emergency Call Reporting (긴급 신고 접수 지원을 위한 대화 상태 추적 및 요약 기반 실시간 텍스트 분석)

  • Oh, Kyo-Joong;Kim, Jinwon;Kim, Ilhoon;Lim, Chae-Gyun;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.16-21
    • /
    • 2021
  • 소방 본부의 119 종합상황실에서는 24시간 국민의 안전을 위해 긴급 신고를 접수한다. 수보사 분들은 24시간 교대 근무를 하며 신고 전화에 접수 및 응대 뿐만 아니라 출동, 지휘, 관제 업무를 함께 수행한다. 이 논문에서는 이 같은 수보사의 업무 지원을 위해 우리가 구축한 음성 인식과 결합된 실시간 텍스트 분석 시스템에 대해서 소개하고, 출동 지령서 자동 작성을 위한 키워드 검출 및 대화 요약 및 개체명 인식에 기반한 대화 상태 추척 방법에 대해 설명하고자 한다. 대화 요약 기술은 음성 인식 결과를 실시간으로 분석하여 중요한 키워드의 검출 및 지령서 자동 작성을 위한 후처리를 수행하며, 문장 수준에서 개체명 인식 및 관계 분석을 통한 목적 대화의 대화 상태 추적을 수행한다. 이 같은 응용 시스템은 딥러닝 및 기계학습 기반의 자연어 처리 시스템이 실시간으로 텍스트 분석을 수행할 수 있는 기술 수준이 되었음을 보여주며, 긴급한 상황에서 많은 신고 전화를 접수하는 수보사의 업무 효율 증진 뿐만 아니라, 정확하고 신속한 위치 파악으로 신고자를 도와주어 국민안전 증진에 도움을 줄 수 있을 것으로 기대된다.

  • PDF

ICLAL: In-Context Learning-Based Audio-Language Multi-Modal Deep Learning Models (ICLAL: 인 컨텍스트 러닝 기반 오디오-언어 멀티 모달 딥러닝 모델)

  • Jun Yeong Park;Jinyoung Yeo;Go-Eun Lee;Chang Hwan Choi;Sang-Il Choi
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.514-517
    • /
    • 2023
  • 본 연구는 인 컨택스트 러닝 (In-Context Learning)을 오디오-언어 작업에 적용하기 위한 멀티모달 (Multi-Modal) 딥러닝 모델을 다룬다. 해당 모델을 통해 학습 단계에서 오디오와 텍스트의 소통 가능한 형태의 표현 (Representation)을 학습하고 여러가지 오디오-텍스트 작업을 수행할 수 있는 멀티모달 딥러닝 모델을 개발하는 것이 본 연구의 목적이다. 모델은 오디오 인코더와 언어 인코더가 연결된 구조를 가지고 있으며, 언어 모델은 6.7B, 30B 의 파라미터 수를 가진 자동회귀 (Autoregressive) 대형 언어 모델 (Large Language Model)을 사용한다 오디오 인코더는 자기지도학습 (Self-Supervised Learning)을 기반으로 사전학습 된 오디오 특징 추출 모델이다. 언어모델이 상대적으로 대용량이기 언어모델의 파라미터를 고정하고 오디오 인코더의 파라미터만 업데이트하는 프로즌 (Frozen) 방법으로 학습한다. 학습을 위한 과제는 음성인식 (Automatic Speech Recognition)과 요약 (Abstractive Summarization) 이다. 학습을 마친 후 질의응답 (Question Answering) 작업으로 테스트를 진행했다. 그 결과, 정답 문장을 생성하기 위해서는 추가적인 학습이 필요한 것으로 보였으나, 음성인식으로 사전학습 한 모델의 경우 정답과 유사한 키워드를 사용하는 문법적으로 올바른 문장을 생성함을 확인했다.

A New Temporal Filtering Method for Improved Automatic Lipreading (향상된 자동 독순을 위한 새로운 시간영역 필터링 기법)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.123-130
    • /
    • 2008
  • Automatic lipreading is to recognize speech by observing the movement of a speaker's lips. It has received attention recently as a method of complementing performance degradation of acoustic speech recognition in acoustically noisy environments. One of the important issues in automatic lipreading is to define and extract salient features from the recorded images. In this paper, we propose a feature extraction method by using a new filtering technique for obtaining improved recognition performance. The proposed method eliminates frequency components which are too slow or too fast compared to the relevant speech information by applying a band-pass filter to the temporal trajectory of each pixel in the images containing the lip region and, then, features are extracted by principal component analysis. We show that the proposed method produces improved performance in both clean and visually noisy conditions via speaker-independent recognition experiments.

A study on performance improvement of neural network using output probability of HMM (HMM의 출력확률을 이용한 신경회로망의 성능향상에 관한 연구)

  • Pyo Chang Soo;Kim Chang Keun;Hur Kang In
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • In this paper, the hybrid system of HMM and neural network is proposed and show better recognition rate of the post-process procedure which minimizes the process error of recognition than that of HMM(Hidden Markov Model) only used. After the HMM training by training data, testing data that are not taken part in the training are sent to HMM. The output probability from HMM output by testing data is used for the training data of the neural network, post processor. After neural network training, the hybrid system is completed. This hybrid system makes the recognition rate improvement of about $4.5\%$ in MLP and about $2\%$ in RBFN and gives the solution to training time of conventional hybrid system and to decrease of the recognition rate due to the lack of training data in real-time speech recognition system.

  • PDF

NUI LMS using Webcam & Mic (Natural User Interface Learning Method System) (음성인식과 안면인식을 활용한 NUI LMS)

  • Gu, Seong-mo;Ahn, In-kun;Lee, Ji-hoon;Moon, Ho
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.552-555
    • /
    • 2020
  • 최근 코로나 관련 온라인 강의가 늘어남에 따라 적은 도구를 이용한 온라인과 오프라인 강의의 장점은 부각, 단점은 보완한 새로운 LMS가 필요함. 웹캠과 마이크를 이용하여 수강자의 수강태도를 파악 후, 수강자의 수업태도를 향상시키는 시스템임.

Implementation of Home Appliance Control System with Speech Recognition based User Interfaces in Home Network Environments (홈 네트워크 환경에서 음성인식기반 사용자 인터페이스를 통한 가전기기 제어 시스템 구현)

  • Kim, Youn-Woo;Jang, Hyun-Su;Kim, Gu-Su;Eom, Young-Ik
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.735-738
    • /
    • 2007
  • 컴퓨팅 기술의 발전에 따라 유비쿼터스 시대로의 이행이 가속화되고 있다. 이에 따라 홈 네트워크 분야에 대한 연구와 상용화를 위한 노력이 활발해지고 있다. 이와 더불어 가전기기들의 종류는 다양해지고 복잡해지면서 사용자들의 가전기기 이용에 있어 사용법을 익혀야하는 어려움이 있다. 이러한 문제점을 해결하기 위한 일환으로 디지털 장치들을 편하게 사용하기 위한 멀티 모달 사용자 인터페이스가 요구되고 있다. 본 논문에서 네트워크 가전기기 제어가 가능한 홈 네트워크 미들웨어인 UPnP를 사용하여 VoiceXML을 통한 음성인식기반 사용자 인터페이스와 디지털 장치 제어 시스템을 제안하고 구현한 후 실험하였다.