Performance Improvement of Word Spotting Using State Weighting of HMM

HMM의 상태별 가중치를 이용한 핵심어 검출의 성능 향상

  • 최동진 (한국과학기술원 전산학과)
  • Published : 1998.11.01

Abstract

본 논문에서는 핵심어 검출의 성능을 향상시키기 위한 새로운 후처리 방법을 제안한다. 일반적으로 핵심어 검출 시스템에 의해 검출된 상위 n개의 후보 단어들의 우도(likelihood)는 비슷한 경우가 많다. 따라서, 한 음성구간에 대해 음향학적으로 유사한 핵심어들간의 오인식 가능성이 높아진다. 그러나 기존의 핵심어 검출에 사용된 후처리 방법은 음성의 모든 구간에 같은 비중을 두고 우도를 평가하므로 비슷한 음향학적 특징을 가지는 유사한 핵심어들의 비교에 적합하지 못하다. 이를 해결하기 위하여, 본 논문에서는 후보단어들의 부분적인 음향학적 특징 차이에 기반한 가중치를 우도 계산 시에 반영함으로써 보다 변별력을 높이는 알고리즘을 제안한다. 실험 결과, 제안된 방법을 이용하여 유사한 후보단어들간의 변별력을 높일 수 있었고, 인식율이 93%일 때, 우도비검사 방법에 비해 19.6%의 false alarm rate을 감소시킬 수 있었다.

Keywords