• Title/Summary/Keyword: 음성인식률

Search Result 549, Processing Time 0.029 seconds

A study on The Guarantee of QoS in the Home Network using Multiple Speech (이동단말에서 다중발화를 이용한 Home network 환경에서의 QoS 보장 연구)

  • 황지수;이창섭;박준석;김유섭;박찬영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.811-813
    • /
    • 2004
  • 휴대전화에서 전달되는 음성데이터들이 전달되는 과정에서 잡음 등의 외부 요인으로 인하여 데이터에 손실이 생기는 문제가 발생한다. 이렇게 전달된 음성데이터가 음성 인식기를 통과하면 바로 음성 인식기를 통과했을 때 보다 인식률이 낮아진다. 본 연구에서는 음성인식 알고리즘을 이용하여 홈 네트워크를 제어하는데 있어서 음성 인식율을 향상시키기 위해서 반복적으로 음성 데이터를 입력받아. 이를 유사율 알고리즘을 적용시켜 추출 된 여러 개의 데이터(text)를 이미 구축된 홈 네트워크 용어 관련 사전에 등록된 단어와의 유사성을 검토하여 추출된 결과로 홈 네트워크를 제어하는 방안을 제안한다. 이 결과, 기존의 방법에 비해서 10% 정도의 인식률의 향상을 확인할 수 있었다.

  • PDF

A Study on Processing of Speech Recognition Korean Words (한글 단어의 음성 인식 처리에 관한 연구)

  • Nam, Kihun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.407-412
    • /
    • 2019
  • In this paper, we propose a technique for processing of speech recognition in korean words. Speech recognition is a technology that converts acoustic signals from sensors such as microphones into words or sentences. Most foreign languages have less difficulty in speech recognition. On the other hand, korean consists of vowels and bottom consonants, so it is inappropriate to use the letters obtained from the voice synthesis system. That improving the conventional structure speech recognition can the correct words recognition. In order to solve this problem, a new algorithm was added to the existing speech recognition structure to increase the speech recognition rate. Perform the preprocessing process of the word and then token the results. After combining the result processed in the Levenshtein distance algorithm and the hashing algorithm, the normalized words is output through the consonant comparison algorithm. The final result word is compared with the standardized table and output if it exists, registered in the table dose not exists. The experimental environment was developed by using a smartphone application. The proposed structure shows that the recognition rate is improved by 2% in standard language and 7% in dialect.

Pseudo-Morpheme-Based Continuous Speech Recognition (의사 형태소 단위의 연속 음성 인식)

  • 이경님
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.309-314
    • /
    • 1998
  • 언어학적 단위인 형태소의 특성을 유지하면서 음성인식 과정에 적합한 분리 기준의 새로운 디코딩 단위인 의사형태소를 정의하였다. 이러한 필요성을 확인하기 위해 새로이 정의된 37개의 품사 태그를 갖는 의사 형태소를 표제어 단위로 삼아 발음사전 생성과 형태소 해석에 초점을 두고 한국어 연속음성 인식 시스템을 구성하였다. 각 음성신호 구간에 해당되는 의사 형태소가 인식되면 언어모델을 사용하여 구성된 의사 형태소 단위의 상위 5개 문장을 기반으로 시작 시점과 끝 시점, 그리고 확률 값을 가진 의사 형태소 격자를 생성하고, 음성 사전으로부터 태그 정보를 격자에 추가하였다. Tree-trellis 탐색 알고리즘 기반에 의사 형태소 접속정보를 사용하여 음성언어 형태소 해석을 수행하였다. 본 논문에서 제안한 의사 형태소를 문장의디코딩 단위로 사용하였을 경우, 사전의 크기면에서 어절 기반의 사전 entry 수를 현저히 줄일 수 있었으며, 문장 인식률면에서 문자기반 형태소 단위보다 약 20% 이상의 인식률 향상을 얻을 수있었다. 뿐만 아니라 형태소 해석을 수행하기 위해 별도의 분석과정 없이 입력값으로 사용되며, 전반적으로 문자을 구성하는 디코딩 수를 안정화 시킬 수 있었다. 이 결과값은 상위레벨 언어처리를 위한 입력?으로 사용될 뿐만 아니라, 언어 정보를 이용한 후처리 과정을 거쳐 더 나은 인식률 향상을 꾀할 수 있다.

  • PDF

An Experimental Speech Translation System for Hotel Reservation (호텔예약을 위한 자동통역 시스템)

  • 구명완;김웅인;김재인;도삼주;강용범;박상규;손일현;김우성;장두성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.105-108
    • /
    • 1995
  • 한국에 있는 손님이 한국어 만을 사용하여 일본 호텔을 예약할 수 있도록 해 주는 한일간 자동통역 시연 시스템에 관해 기술하였다. 이 시스템은 한국어 음성인식부, 한일 기계번역부, 한국어 음성합성부로 구성되어 있다. 한국어 음성인식부는 기본적으로 HMM을 이용하는 화자독립, 약 300단어급 연속음성인식 시스템으로서 전향 언어 모델로 바이그램 언어 모델, 후향 언어 모델로는 의존 문법을 사용하여 N-BEST 문장을 생성해낸다. 실험결과, 단어 인식률은 top1 문장에 대해 약 94.5%, top5 문장에 대해 약 94.7%의 인식률을 얻었다. 인식 시간은 길이가 다른 여러 문장들에 대해 약 0.1~3초가 걸렸다. 기계번역부에서는 음성인식에서 의존 문법을 사용하여 분석된 파싱 결과를 이용, 직접 번역 방식을 채택하여 일본어를 생성한다. 음성 합성부는 반음소를 합서의 기본단위로 하고, 합성방식으로는 주기 파형 분해 및 재배치 방식으로 하였다. 실험 환경은 2 CPU를 장착한 SPARC 20 workstation 이었으며 실시간 특징 추출을 위해 TMS320C30 DSP 보드 1개를 이용하였다.

  • PDF

Noise Robust Speech Recognition Based on Parallel Model Combination Adaptation Using Frequency-Variant (주파수 변이를 이용한 Parallel Model Combination 모델 적응에 기반한 잡음에 강한 음성인식)

  • Choi, Sook-Nam;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.252-261
    • /
    • 2013
  • The common speech recognition system displays higher recognition performance in a quiet environment, while its performance declines sharply in a real environment where there are noises. To implement a speech recognizer that is robust in different speech settings, this study suggests the method of Parallel Model Combination adaptation using frequency-variant based on environment-awareness (FV-PMC), which uses variants in frequency; acquires the environmental data for speech recognition; applies it to upgrading the speech recognition model; and promotes its performance enhancement. This FV-PMC performs the speech recognition with the recognition model which is generated as followings: i) calculating the average frequency variant in advance among the readily-classified noise groups and setting it as a threshold value; ii) recalculating the frequency variant among noise groups when speech with unknown noises are input; iii) regarding the speech higher than the threshold value of the relevant group as the speech including the noise of its group; and iv) using the speech that includes this noise group. When noises were classified with the proposed FV-PMC, the average accuracy of classification was 56%, and the results from the speech recognition experiments showed the average recognition rate of Set A was 79.05%, the rate of Set B 79.43%m, and the rate of Set C 83.37% respectively. The grand mean of recognition rate was 80.62%, which demonstrates 5.69% more improved effects than the recognition rate of 74.93% of the existing Parallel Model Combination with a clear model, meaning that the proposed method is effective.

Comparison of ICA Methods for the Recognition of Corrupted Korean Speech (잡음 섞인 한국어 인식을 위한 ICA 비교 연구)

  • Kim, Seon-Il
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • Two independent component analysis(ICA) algorithms were applied for the recognition of speech signals corrupted by a car engine noise. Speech recognition was performed by hidden markov model(HMM) for the estimated signals and recognition rates were compared with those of orginal speech signals which are not corrupted. Two different ICA methods were applied for the estimation of speech signals, one of which is FastICA algorithm that maximizes negentropy, the other is information-maximization approach that maximizes the mutual information between inputs and outputs to give maximum independence among outputs. Word recognition rate for the Korean news sentences spoken by a male anchor is 87.85%, while there is 1.65% drop of performance on the average for the estimated speech signals by FastICA and 2.02% by information-maximization for the various signal to noise ratio(SNR). There is little difference between the methods.

A Study on the Speech Recognition Moduleas Design Using HMM Speech Recognition Algorithm (HMM(Hidden Markov Model) 음성인식 알고리즘을 이용한 효율적인 음성인식 모듈 개발 설계에 관한 연구)

  • 김정훈;류홍석;강재명;강성인;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.337-340
    • /
    • 2002
  • 본 논문에서는 휠체어 시스템에 화자 독립 고립단어 인식을 위한 임베디드 시스템 설계에 관한 내용을 서술한다. 실제 환경에서는 잡음이 포함되어 있어 인식률을 저하시키므로, 잡음을 제거하는 방식 중 가장 간단한 방식인 스펙트럼 차감법(Spectral subtraction method)을 사용하여 잡음을 제거했다 전처리 단계에서는 12차 LPC&Cepstrum 방식을 사용했고, 인식 알고리즘은 DHMM (Discrete Hidden Markov Model)을 전반부 인식기로 사용했다. 이 알고리즘을 적용하기 위해서는 데이터 간소화를 위해 벡터양자화(Vector Quantization) 처리가 전제되어야한다 또한 인식알고리즘은 인식률을 향상을 위해 후처리 인식기로 신경망(MLP:Multi-layer Perceptron)을 통해서 인식률을 향상시켰다 화자 독립 시스템에 맞는 인식 단어의 구성은 총 7개단어로 남녀 총 25명 목소리로 구성하였다. 그리고 하드웨어 구성은 32-bits floating point 방식인 TMS320C32를 적용했고, 메모리 부분은 4Mbyte로 설계를 했으며, 메인보드의 설계는 현재 완성 단계에 있다.

Voice Recognition using a Phoneme based Similarity Algorithm in Home Networks (음소 기반의 유사율 알고리즘을 이용한 Home Network 환경에서의 음성 인식)

  • Lee, Chang-Sub;Yu, Jae-Bong;Park, Joon-Seok;Yang, Soo-Ho;Kim, Yu-Seop;Park, Chan-Young
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.767-770
    • /
    • 2005
  • 네트워크상에서 전달되는 음성데이터는 전달되는 과정에서 잡음 등의 외부 요인으로 인하여 데이터에 손실이 생기는 문제가 발생한다. 이렇게 전달된 음성데이터가 음성 인식기를 통과하면 바로 음성 인식기를 통과했을 때 보다 인식률이 낮아진다. 본 연구에서는 홈 네트워크를 제어하는데 있어서 음성 인식률을 향상시키기 위해서 음성 데이터를 입력받아, 이를 음소단위 기반의 유사율 알고리즘을 적용시켜 이미 구축된 홈 네트워크 용어 관련 사전에 등록된 단어와의 유사성을 검토하여 추출된 결과로 홈 네트워크를 제어하는 방안을 제안한다. 음소단위 기반의 유사율 알고리즘과 다중발화를 이용했을 때 Threshold 값이 85% 일 경우 사전에 구축된 단어와 매칭된 인식률은 100%였으며, 사전에 없는 단어의 오인식률은 2%로 감소되었다.

  • PDF

A Study on the Korean Continuous Speech Recognition using Adaptive Pruning Algorithm and PDT-SSS Algorithm (적응 프루닝 알고리즘과 PDT-SSS 알고리즘을 이용한 한국어 연속음성인식에 관한 연구)

  • 황철준;오세진;김범국;정호열;정현열
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.6
    • /
    • pp.524-533
    • /
    • 2001
  • Efficient continuous speech recognition system for practical applications requires that the processing be carried out in real time and high recognition accuracy. In this paper, we study the acoustic models by adopting the PDT-SSS algorithm and the language models by iterative learning so as to improve the speech recognition accuracy. And the adaptive pruning algorithm is applied to the continuous speech. To verify the effectiveness of proposed method, we carried out the continuous speech recognition for the Korean air flight reservation task. Experimental results show that the adopted algorithm has the average 90.9% for continuous speech recognition and the average 90.7% for word recognition accuracy including continuous speech. And in case of adopting the adaptive pruning algorithm to continuous speech, it reduces the recognition time of about 1.2 seconds(15%) without any loss of accuracy. From the result, we proved the effectiveness of the PDT-SSS algorithm and the adaptive pruning algorithm.

  • PDF

Design and Implementation of Bimodal System using Face and Audio (얼굴과 음성 정보를 이용한 바이모달 시스템 설계 및 구현)

  • Kim, Myung-Hun;Lee, Chi-Geun;Jung, Sung-Tae
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.701-704
    • /
    • 2005
  • 최근 들어 바이모달 인식에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 음성과 얼굴을 이용하여 바이모달 시스템을 구현하였다. 얼굴인식은 객체 분류 기법인 SVM을 이용하여 얼굴을 검출 및 인식하였으며, 음성인식은 HMM을 이용하여 음성인식을 하였다. 각기 인식된 결과에 대해 합성을 통하여 잡음에 의해 낮아지는 음성 인식률을 얼굴 인식과 같이 사용함으로서, 전체적인 인식률 향상을 볼 수 있다.

  • PDF