• Title/Summary/Keyword: 음극환원

Search Result 105, Processing Time 0.027 seconds

An Electrochemical and Optical Study on the Corrosion and Passivation of Metals. An Electrochemical and Optical Study on the Passivation Film of Electrolytic Iron (금속 부식과 부동화에 관한 전기화학적 및 광학적 연구. 순철의 부동화 피막에 관한 전기화학적 및 광학적 연구)

  • Park Byung So;Paik Woon-Kie;Yeo, In Hyeong
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.365-369
    • /
    • 1978
  • Ellipsometric and reflectance measurements were made on an iron surface in a cathodically reduced state and in an anodically passivated state. From the differences in the optical parameters (${\Delta},\;{\psi}$, and reflectance) between the reduced (film-free) and passivated (film-covered) states the thickness and optical constants of the surface film were determined. In the passive state at -400 mV vs. SCE in borate-boric acid buffer solution the anodic film had a thickness of about 11${\AA}$ and optical constants of ${\tilde{n}}$= 2.8 - 0.8 i. This value indicates a substantial electronic conductivity of the anodic film.

  • PDF

A Spatio-Temporal Density Measurement of NO Molecules in Pulsed Barrier Discharge Using Laser Induced Fluorescence (레이져 유기형광법을 이용한 펄스 배리어 방전 공간에서의 NO분자에 대한 시·공간적 밀도변화 측정)

  • Han, Sang-Bo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.160-168
    • /
    • 2010
  • This paper tried to find out NO generation and removal mechanisms in the space of the atmospheric pulsed barrier discharge using laser induced fluorescence method, which is a very effective approach to the measurement of spatio-temporal density of specific molecules. The propagation velocity of the primary streamer reaches about $2.7{\times}10^6$[m/s] and the secondary streamer is produced in the vicinity of positive electrode after the primary streamer finished. In this work, pulse Nd:Yag and Dye lasers are used for generating the specific wavelength of 226[nm], which is possible to excite NO molecules into $A^2{\Sigma}^+{\rightarrow}X^2{\prod}$(0,0) and fluorescence signals as the transition of $A^2{\Sigma}^+{\leftarrow}X^2$(0,2) is measured. For the effective removal of NO molecules in the plasma discharge process, the lower oxygen contents are needed and the influence of secondary streamer for the reduction mechanism of NO molecules is important

Preparation of $\textrm{TiO}_2$ Thin Film by Electrochemical Method (전기화학법을 이용한 $\textrm{TiO}_2$ 박막의 제조)

  • Gong, Pil-Gu;Lee, Jong-Kook;Kwak, Heo-Seop;Park, Soon-Ja;Kim, Hwan
    • Korean Journal of Materials Research
    • /
    • v.6 no.10
    • /
    • pp.999-1006
    • /
    • 1996
  • 전기화학법 중 음극환원법을 이용하여 0.005M TiCI4수용액으로부터 수화물 형태의 TiO2박막을 제조하였다. TiCI4수용액에 첨가제로 에탄올을 50vol% 첨가하여 균일한 박막을 얻을 수가 있었으며, 전류밀도와 시간에 따라서 박막의 두께와 미세구조가 변화하였다. 성장속도가 큰 조건에서 얻은 박막은 균질성의 감소로 인하여 건조과정이나 열처리 중 다량의 균열이 발생하였다. 일정한 전류밀도ㅇ에서 반응시간의 증가에 따라 박막의 두께가 직선적으로 증가하였으며, 10mA/$\textrm{cm}^2$의 전류밀도에서 3분 동안 반응시켜 약 0.7$\mu\textrm{m}$ 두께의 우수한 TiO2박막을 얻을수 있었다. 이러한 박막은 80$0^{\circ}C$에서 한 시간 열처리 한 결과, rutile 단일상으로 결정화되었다.

  • PDF

Optimum Reduction Condition of SDC-NiO Composite Anode for SDC-based Single Chamber Solid Oxide Fuel Cells (SDC계 단실형 고체산화물 연료전지용 SDC-NiO 복합음극의 최적 환원 조건)

  • Min, Ji-Hyun;Ahn, Sung-Jin;Moon, Joo-Ho;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.542-547
    • /
    • 2007
  • We have determined an optimal reduction condition for NiO-based anode in single chamber solid oxide fuel cells that involve samaria-doped ceria (SDC) as an electrolyte. Optimal condition should not only induce sufficient reduction of NiO to Ni, but also prevent the reduction of SDC electrolyte in order to achieve high open circuit voltage (OCV) and power output. Thermodynamic consideration allowed us to determine the optimal anode reduction condition as $96%H_2-4%H_2O$ atmosphere at $250^{\circ}C$. This finding was in a good agreement with the experimental verifications by monitoring the conductivities of SDC and NiO under different reducing conditions.

Electrochemical Reduction Process for Pyroprocessing (파이로프로세싱을 위한 전해환원 공정기술 개발)

  • Choi, Eun-Young;Hong, Sun-Seok;Park, Wooshin;Im, Hun Suk;Oh, Seung-Chul;Won, Chan Yeon;Cha, Ju-Sun;Hur, Jin-Mok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.279-288
    • /
    • 2014
  • Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-$Li_2O$ electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

Chemical Stability Evaluation of Ceramic Materials for Liquid Cadmium Cathode (액체카드뮴음금용 세라믹 소재의 화학적 안정성 평가)

  • Ku, Kwang-Mo;Ryu, Hong-Youl;Kim, Seung-Hyun;Kim, Dae-Young;Hwang, Il-Soon;Sim, Jun-Bo;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • LCC (Liquid cadmium cathode) is used for electrowinning in pyroprocessing to recover uranium and transuranic elements simultaneously. It is one of the core technologies in pyroprocessing with higher proliferation resistance than a wet reprocessing because LCC-cell does not separate TRU from uranium. The crucible which holds the LCC is technically important because it should be nonconducting material to prevent deposition of metallic elements on the crucible outer surface. The chemical stability is also crucial factor to choose crucible material due to the strong reactivities of TRU and possible incorporation of Li metal during the operation. In this study, the chemical stabilities of four kinds of representative ceramic materials such as $Al_2O_3$, MgO, $Yl_2O_3$ and BeO were thermodynamically and experimentally evaluated at $500^{\circ}C$ with simulated LCC. The contact angle of LCC on ceramic materials was measured as function of time to predict chemical reactivity. $All_2O_3$ showed poorest chemical stability and the pores in BeO contributed to a decreases in contact angle. MgO and $Y_2O_3$ have superior chemical stability among the materials.

Effect of Rare Earth Elements on Uranium Electrodeposition in LiCl-KCl Eutectic Salt (LiCl-KCl 공융염에서 우라늄 전착거동에 대한 희토류 원소들의 영향)

  • Park, Sungbin;Kang, Young-Ho;Hwang, Sung Chan;Lee, Hansoo;Paek, Seungwoo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.263-269
    • /
    • 2015
  • It is necessary to investigate the electrodeposition behavior of uranium and other elements on the cathode in the electrorefining process to recover the uranium selectively from the reduced metals of the electrolytic reduction process since transuranic elements and rare earth elements is dissolved in the LiCl-KCl eutectic salt. Study on separation factors of U, Ce, Y and Nd based on U and Ce was performed to investigate the deposition behavior of the cathode with respect to the concentration of rare earth elements in LiCl-KCl eutectic salt. After electrorefining with constant current mode by using Ce metal as a sacrifice anode, the contents of U, Ce, Y and Nd in the salt phase and the deposit phase of the cathode were analyzed, and separation factors of the elements were obtained from the analyses. Securing conditions of pure uranium recovery in the elctrorefining process was investigated by considering the separation factors with respect to $UCl_3$ and $CeCl_3/UCl_3$ ratio.

AFM Study on Surface Film Formation on a Graphite Negative Electrode in a $LiPF_6$-based Non-Aqueous Solution (AFM을 이용한 $LiPF_6$를 주성분으로 하는 비수용액중에서의 흑연 음극 표면에 형성되는 피막에 관한 연구)

  • Jeong, Soon-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1313-1318
    • /
    • 2006
  • The mechanism fur the surface film formation was studied by in situ Atomic Force Microscopy (AFM) observation of a highly oriented pyrolytic graphite (HOPG) basal plane surface during cyclic voltammetry at a slow scan-rate of 0.5 mV $s^{-1}$ in 1 moi $dm^{-3}$ (M) $LiPF_6$ dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). Decomposition of the electrolyte solution began at a potential around 2.15 V vs. $Li^+$/Li on step edges. In the potential range 0.95-0.8 V vs. $Li^+$/Li, flat areas (hill-like structures) and large swelling appeared on the surface. It is considered that these two features were formed by the intercalation of solvated lithium ions and their decomposition beneath the surface, respectively. At potentials more negative than 0.80 V vs. $Li^+$/Li, particle-like precipitates appeared on the basal plane surface. After the first cycle, the thickness of the precipitate layer was 30 nm. The precipitates were considered to be decomposition of the lithium salt ($LiPF_6$) and solvent molecules (EC and DEC), and to have an important role in suppressing further solvent decomposition on the basal plane.

  • PDF

Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries (커켄달 효과와 주형법을 통해 합성한 α-Fe2O3 중공입자로 구성된 다공성1차원 구조체의 리튬 이차전지 음극활물질 적용)

  • Lee, Young Kwang;Jeong, Sun Young;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.819-825
    • /
    • 2018
  • Porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were prepared by applying both template method and Kirkendall diffusion effect to electrospinning process. During heat-treatment processes, the solid Fe nano-metals formed by initial heat-treatment in the carbon matrix were converted into the hollow structured ${\alpha}-Fe_2O_3$ nanospheres. In particular, PS nanobeads added in the spinning solution were decomposed and formed numerous channels in the composite, which served as a good pathway for Kirkendall diffusion gas. The resulting porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were applied as an anode material for lithium-ion batteries. The discharge capacities of the nanofibers for the 30th cycle at a high current density of $1.0A\;g^{-1}$ was $776mA\;h\;g^{-1}$. The good lithium ion storage property was attributed to the synergetic effects of the hollow ${\alpha}-Fe_2O_3$ nanospheres and the interstitial nanovoids between the nanospheres. The synthetic method proposed in this study could be applied to the preparation of porous nanofibers comprising hollow nanospheres with various composition for various applications, including energy storage.

Synthesis of Polyaniline/WO3 Anode for Lithium Ion Capacitor and Its Electrochemical Characteristics under Light Irradiation (리튬이온커패시터용 Polyaniline/WO3 음극 제조 및 이의 광 조사에 따른 전기화학적 특성 변화)

  • Park, Yiseul
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.884-889
    • /
    • 2018
  • In this study, polyaniline $(PANI)/WO_3$ electrode was prepared as an anode of a lithium ion capacitor, and its electrochemical characteristics were measured and analyzed. When PANI was electrochemically deposited on the surface of $WO_3$ electrode, the capacity of $PANI/WO_3$ was improved with increase of the deposited amounts of PANI. Furthermore, the effect of light irradiation on capacity and coulombic efficiency was examined by irradiating sunlight during charging and discharging. When the light was irradiated to the $WO_3$ electrode and the $PANI/WO_3$ electrode, those capacities and coulombic efficiencies were increased compared to that measured under the dark condition. It is attributed to the photocatalytic property of $WO_3$ that can generate photoelectrons by light irradiation. In $PANI/WO_3$ electrode, PANI also can be excited under the light irradiation with affecting the electrochemical property of electrode. The photoelectrons improve the capacity by participating in the intercalation of $Li^+$ ions, and also improve the coulombic efficiency by facilitating electrons' transport. Under the dark condition, the capacity of $PANI/WO_3$ was gradually reduced with increase of cycles due to a poor stability of PANI. However, the stability of PANI was significantly improved by the light irradiation, which is attributed to the oxidation-reduction reaction originated from the photogenerated electrons and holes in $PANI/WO_3$.