• Title/Summary/Keyword: 육면체 요소

Search Result 32, Processing Time 0.028 seconds

Automatic Hexahedral Mesh Generation using Face-offsetting Method (Face-offsetting 기법을 이용한 육면체 요소망 자동생성 기법)

  • Cho, Hyunjoo;Lee, Jeeho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.2
    • /
    • pp.20-26
    • /
    • 2016
  • This paper proposes an automatic hexahedral mesh generation method, in which internal medial surfaces are established to partition a region using the face-offsetting method. In order to test the usability of the suggested method, aspect ratios and Jacobians of the generated mesh for two models are evaluated and compared with ones from existing methods. It is verified that the proposed medial surface generation and partitioning scheme based on the face-offsetting method can be effectively used in the automatic hexahedral mesh generation procedure.

Static Analysis of Three Dimensional Solid Structure by Finite Element-Transfer Stiffness Coefficent Method Introducing Hexahedral Element (육면체 요소를 도입한 유한요소-전달강성계수법에 의한 3차원 고체 구조물의 정적 해석)

  • Choi, Myung-Soo;Moon, Deok-Hong
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The authors suggest the algorithm for the static analysis of a three dimensional solid structure by using the finite element-transfer stiffness coefficient method (FE-TSCM) and the hexahedral element of the finite element method (FEM). MATLAB codes were made by both FE-TSCM and FEM for the static analysis of three dimensional solid structure. They were applied to the static analyses of a very thick plate structure and a three dimensional solid structure. In this paper, as we compare the results of FE-TSCM with those of FEM, we confirm that FE-TSCM introducing the hexahedral element for the static analysis of a three dimensional solid structure is very effective from the viewpoint of the computational accuracy, speed, and storage.

Three-dimensional Forging Simulation with Tetrahedral Elements and Hexahedral Elements and their Comparison with Experiments (사면체요소와 육면체요소를 이용한 삼차원 단조 시뮬레이션 결과의 비교 및 검증)

  • Lee, Min-Cheol;Baek, Jong-Pa;Joun, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1637-1641
    • /
    • 2007
  • In this paper, we simulate a rotor pole cold forging process by a forging simulator with both tetrahedral and hexahedral element capabilities and compare the predictions obtained by the two approaches with the experiments. Hexahedral element capability runs manually while tetrahedral element capability runs automatically with help of an intelligent remeshing technique. It is shown that the tetrahedral element capability can give quite accurate solution if assisted by the intelligent remeshing technique even though the tetrahedral element itself is not theoretically and numerically clear.

  • PDF

2.5 Dimensional Hexahedral Mesh Generation by Mapping Algorithm (매핑 알고리즘을 이용한 2.5차원 입체에 대한 육면체 요소망 자동 생성)

  • Choi C.H.;Chae S.W.;Kwon K.Y.;Lee B.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.423-424
    • /
    • 2006
  • This paper proposes a hexahedral mesh generation scheme based on mapping approach and improves the drawback of sweeping algorithm. In order to improve the drawback, the algorithm in this paper generates hexahedral meshes by three dimensional element mapping first. Then hexahedral meshes are equivalent to geometry of the volume by mapping and smoothing. Sample meshes are constructed to demonstrate the mesh generating capability of the proposed algorithm.

  • PDF

Periodic Mesh Generation for Composite Structures using Polyhedral Finite Elements (다면체 유한요소를 이용한 복합재 구조의 주기 격자망 생성)

  • Sohn, Dongwoo;Park, Jong Youn;Cho, Young-Sam;Lim, Jae Hyuk;Lee, Haengsoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.239-245
    • /
    • 2014
  • Finite element modeling of composite structures may be cumbersome due to complex distributions of reinforcements. In this paper, an efficient scheme is proposed that can generate periodic meshes for the composite structures. Regular meshes with hexahedral finite elements are first prepared, and the elements are then trimmed to fit external surfaces of reinforcements in the composite structures. The trimmed hexahedral finite elements located at interfaces between the matrix and the reinforcements correspond to polyhedral finite elements, which allow an arbitrary number of nodes and faces in the elements. Because the trimming process is consistently conducted by means of consistent algorithms, the elements of the reinforcements are automatically compatible with those of the matrices. With the additional consideration of periodicity of reinforcements in a representative volume element(RVE), the proposed scheme provides periodic meshes in an efficient manner, which are compatible for each pair of periodic boundaries of the RVE. Therefore, periodic boundary conditions for the RVE are enforced straightforwardly. Numerical examples demonstrate the effectiveness of the proposed scheme for finite element modeling of complex composite structures.

p-Adaptive Analysis by Three Dimensional Hierarchical Hexahedral Solid Element (3차원 계층적 육면체 고체요소에 의한 p-적응적 해석)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Shin, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.81-90
    • /
    • 2008
  • This paper presents a finite element formulation for the three-dimensional hierarchical solid element using Integrals of Legendre polynomials. The proposed hexahedral solid element is composed of four different modes including vertex, edge, face, and internal mode, respectively. The eigenvalue and patch test have been carried out to confirm the zero-energy mode and constant strain condition. In addition to these, a posteriori error estimation has been studied for the p-adaptive finite element analysis that is based on a smoothing technique to compute a post-processed solution from the finite element solution. The uniform p-refinement and non-uniform p-refinement are compared in terms of convergence rate as the number of degree of freedom is increased. The simple cantilever beam is tested to show the performance of the proposed solid element.

  • PDF

주조 해석을 위한 3차원 상변화 유한 요소 해석 프로그램 개발

  • 하성규;조성수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.147-159
    • /
    • 1997
  • 본 연구에서는 상변화 영역에서 열평형 방정식을 별도로 수식화하지 않고도 잠열의 영향을 고려할 수 있으며, 고상과 액상 그리고 2상 영역에서 동일한 형태의 방정식을 사용할 수 있는 엔탈피법을 이용하였다. 상변화 문제의 엔탈피법을 이용한 유한요소해석을 위하여 8개의 절점을 가지며, 각 절점에서 1개의 자유도를 가지는 3차원 육면체 요소가 개발되었다. 해법의 타당성과 해의 정확도를 검증하기 위하여 엄밀해가 존재하는 상변화 문제를 유한요소법으로 해석하고 그 결과를 비교 검토하였다. 연구 결과, 엔탈피법에 의한 유한요소해는 상변화 영역이 하나의 특정 온도인 경우는 물론 온도 구간으로 나타나는 경우에도 시간 증분과 요소수에 크게 영향을 받지 않고 안정된 해가 됨을 알 수 있었다. 검증된 요소를 이용하여 3차원 상변화 문제에 적용하여 해를 나타내었다.

  • PDF

Consideration on the Results of Metal Forming Simulation Based on MINI-Elements (MINI-요소를 이용한 소성가공 공정 시뮬레이션 결과에 관한 고찰)

  • Lee Mincheol;Chung Sukhwan;Kwon Youngsam;Joun Mansoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1475-1482
    • /
    • 2004
  • In this paper, the rigid-viscoplastic finite element solutions obtained by MINI-elements based triangular elements and tetrahedral elements are compared with those obtained from numerically well-behaved rectangular and hexahedral elements. The theoretical background of the MINI-elements is introduced in detail and the rigid-viscoplastic finite element formulation is also given. Discussion on the results of the MINI-elements is made with emphasis on the effect of a stabilizer simplifying velocity-bubble coupled terms.

Hexahedral Mesh Generation by Sweeping and Grafting Algorithm (스위핑과 접목 알고리즘은 이용한 육면체 요소망의 생성)

  • 권기연;채수원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.125-132
    • /
    • 2001
  • An algorithm for generating all hexahedral meshes for three dimensional objects has been presented. This algorithm is based on the sweeping and the grafting method. In sweeping process internal nodes generating method has been modified by employing the distances between nodes on connecting surfaces and on source surfaces. In addition to the sweeping processes grafting algorithm is also modified to obtain more effective meshes by refining elements near grafting surfaces. With this method two and a half dimensional hexahedral meshes for three dimensional objects can be generated effectively. Sample meshes are constructed to demonstrate the mesh generating capability of the proposed algorithm.

  • PDF