• Title/Summary/Keyword: 유해남조류

Search Result 42, Processing Time 0.033 seconds

Global Occurrence of Harmful Cyanobacterial Blooms and N, P-limitation Strategy for Bloom Control (유해 남조류의 세계적 발생현황 및 녹조제어를 위한 질소와 인-제한 전략)

  • Ahn, Chi-Yong;Lee, Chang Soo;Choi, Jae Woo;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Increased harmful algal blooms by cyanobacteria are threatening public health and limiting human activities related with freshwater ecosystems. Phosphorus (P) has long been suggested as a critical nutrient for cyanobacterial bloom through field research in Canada during the 1970s, proposing a P-based freshwater management guideline. However, recently, nitrogen (N) has also been highlighted as an impacting nutrient on cyanobacterial harmful algal blooms (CyanoHABs). Due to the intensive and frequent observation of Microcystis, this kind of paradigm shift from P limitation to season-dependent N or P limitation has an important implication for a dual nutrient management strategy in eutrophic freshwaters. Through recent international researches, general strategies to control CyanoHABs in lakes and reservoirs are as follows: a dual nutrient (N & P) reduction, wastewater collection and treatment, pre-treatment of influent water in buffer zones, dredging of sediment, reduction of residence time, algal collection, and precipitation and flocculation of cyanobacteria. In addition, sustainable and integrative freshwater algae management should be carried out, based on the ecological aspect, because cyanobacteria are not the target organism to be eradicated, but an essential microbial member in the freshwater ecosystem.

Development of pretreatment system for algae reduction in water treatment plant (정수장 유입조류 저감을 위한 전처리 시스템 개발)

  • Yum, Sang leen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.1-1
    • /
    • 2017
  • 녹조현상은 부영양화된 호수나 유속이 느린 하천에서 부유성의 조류(식물 플랑크톤)가 대량 증식하여 수면에 집적하게 되고 물의 색을 현저하게 녹색으로 변화시킴으로써 발생된다. 최근에는 이러한 녹조 현상이 광역화, 독성화, 장기화의 특성을 띠며 빈번히 발생되고 있다. 녹조현상은 독소를 발생시키는 남조류에 의해 수생식물에 악영향을 주는 것으로 알려져 있다. 예를 들면 독소에 의한 가축에의 영향, 생태계 파괴로 인한 생태학적인 문제, 산소결핍으로 인한 물고기 및 각종 수중생물 폐사 등의 심각한 문제를 야기한다. 또한 조류는 식수에서 맛과 냄새를 유발할 뿐 아니라 Microcystin-LR과 같은 유해한 독소를 배출하여 공중 보건을 위협한다. 이에 식수원으로 사용되는 하천의 조류 번식에 따른 대응방안 마련이 절실히 요구된다. 유입되는 조류로 부터의 정수처리 설비의 처리 부하를 줄이기 위해서는 취수시스템과 연계한 고속 전처리 조류 제거 시스템을 개발이 필요하다. 기존의 전기응집부상공정(Electro-Coagulation and Flotation, ECF)은 화학 약품(응집제) 투여량이 적은 이점이 있지만 비교적 긴 전기 분해 시간이 필요하여 기존 정수처리 시스템과 연계성에 있어 한계가 있다. 이에 본 연구는 전기 분해 시간을 줄여 유입된 조류를 수 초 내에 응집하여 1분 이내에 조류를 분리하는 초고속 조류 전처리 기술을 개발하였다. 개발된 기술의 현장적용 및 실험 결과, 응집과정이 없이도 Chlo-a는 약 45 %의 제거 효율을 나타났다. 또한 응집제의 투입 및 전극에 의한 부상시스템에 의해 Chlo-a가 약 80 %로 제거되는 것으로 나타나 빈번하게 발생되는 조류로부터 안정적인 물 공급을 위한 전처리 공정으로 활용이 가능할 것으로 판단된다.

  • PDF

Water Quality Variations due to Operation of Yeongju Dam (영주댐 운영에 따른 수질 변화)

  • Lee, Dong Yeol;Kim, Seong Eun;Baek, Kyong Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.179-179
    • /
    • 2022
  • 최근 화두가 되고 있는 환경문제 중 하나로 녹조현상을 꼽을 수 있다. 녹조란 남세균이 대량 증식함으로써 물빛이 녹색으로 변하는 현상으로, 영양염류 및 수온 등 이화학적 요소뿐만 아니라체류시간과 같은 수리학적 요인까지 모두 충족되었을 때 발생한다. 심하면 고밀도의 스컴(scum)을 형성하며 독소와 악취를 동반하기도 한다. 유해 남세균이 생성하는 마이크로시스틴(microcystin, MC)이 함유된 물을 입 또는 코로 섭취시 간을 손상시킨다는 보고가 있으며, 최근 해외에서는 MC가 미세먼지처럼 공기 중에 떠다니다 수변에서 생활하는 사람의 호흡기로 들어가 건강 피해를 줄 수 있다는 연구가 속속 나오고 있다. 본 연구는 우리나라 최초의 수질개선용 댐인 영주댐을 연구 대상으로 삼아 수질 모델링을 구축하고 영주댐 운영에 따른 댐 상·하류 조류 변화를 정량적으로 분석하였다. 조류의 강도를 추정하는데 클로로필-a 농도를 사용하였으며, 분석 도구로는 국립환경과학원이 수질예측 및 평가 시 사용하는 EFDC(Environmental Fluid Dynamics Code) 모형을 활용하였다. 대상 구간의 실제 폭, 하상고 분포 등을 고려하여 수표면 격자망을 구현하였으며, 환경부에서 제공하는 수위 및 DO, TN, T-P, 클로로필-a 등을 활용하여 EFDC 모형의 수리 및 수질 재현성 검토를 하였다. 검·보정된 EFDC 모형으로 영주댐의 방류량 변화 및 댐의 개방과 같은 수리학적 요인을 제어하여 특정 지점의 조류 변화를 분석하였다.

  • PDF

Modeling of algal fluctuations in the reservoir according to the opening of Yeongju Dam (영주댐 개방에 따른 호내 조류 변동 모의)

  • Lee, Dong Yeol;Kim, Seong Eun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Due to climate change, algal blooms frequently occur not only in Korea but also around the world, and the risk of toxicity of harmful algae has recently been issued. It is known that the representative harmful algae, cyanobacteria, are caused by the intersection of three factors: water temperature, residence time, and nutrients. In this study, water quality simulation was carried out using EFDC, a three-dimensional numerical model, to analyze the variations in water quality due to the decrease of residence time according to the opening of Yeongju Dam in Naeseong-Cheon. In fact, the concentration of chlorophyll-a in Yeongju Dam in the summer of 2021 was significant, exceeding the 'algae warning' for a long time based on the previous algae warning system. On the other hand, as a result of performing the simulation under the condition that the dam gate was completely opened, the concentration of chlorophyll-a was mostly reduced below the 'algae warning' level during the simulation period. It was confirmed that reducing the residence time by restoring the flow of Naeseong-Cheon is a way to immediately reduce algae in Yeongju Dam.

Analysis of performance changes based on the characteristics of input image data in the deep learning-based algal detection model (딥러닝 기반 조류 탐지 모형의 입력 이미지 자료 특성에 따른 성능 변화 분석)

  • Juneoh Kim;Jiwon Baek;Jongrack Kim;Jungsu Park
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.267-273
    • /
    • 2023
  • Algae are an important component of the ecosystem. However, the excessive growth of cyanobacteria has various harmful effects on river environments, and diatoms affect the management of water supply processes. Algal monitoring is essential for sustainable and efficient algae management. In this study, an object detection model was developed that detects and classifies images of four types of harmful cyanobacteria used for the criteria of the algae alert system, and one diatom, Synedra sp.. You Only Look Once(YOLO) v8, the latest version of the YOLO model, was used for the development of the model. The mean average precision (mAP) of the base model was analyzed as 64.4. Five models were created to increase the diversity of the input images used for model training by performing rotation, magnification, and reduction of original images. Changes in model performance were compared according to the composition of the input images. As a result of the analysis, the model that applied rotation, magnification, and reduction showed the best performance with mAP 86.5. The mAP of the model that only used image rotation, combined rotation and magnification, and combined image rotation and reduction were analyzed as 85.3, 82.3, and 83.8, respectively.

Algicidal Characteristics of Cashew Nut Oil against Microalgae and Development of its Mixtures with Synergistic Effects (미세조류에 대한 캐슈넛 오일의 살조활성특징과 상승효과를 가지는 혼합처리제 탐색)

  • Kwak, Hwa Sook;Kim, Bo Gwan;Kim, Jin-Seog
    • Weed & Turfgrass Science
    • /
    • v.5 no.3
    • /
    • pp.136-143
    • /
    • 2016
  • This study was conducted to investigate the algicidal characteristics of cashew nut oil (CNO) and to develop CNO mixtures with other compounds having synergistic effects on the growth inhibition against a blue-green alga, Microcystis aeruginosa. Among tested CNOs, CNO with higher anacardic acid contents (Ana-A) exhibited the best algicidal activity against M. aeruginosa. Ana-A showed broad algicidal spectrum with particular greater activity against blue-green algae than green algae. Ana-A showed the greatest activity against to Oscillatoria tenuis ($IC_{50}=0.19{\mu}g\;mL^{-1}$) among the tested blue-green algae and to Chlorella vulgaris ($IC_{50}=4.54{\mu}g\;mL^{-1}$) among the tested green algae, respectively. In a mixture experiment to evaluate a chemical interaction in M. aeruginosa control, Ana-A showed a strong synergistic effect with MSB and menadione, mild synergistic effect with citric acid, and additive effect with chryspophanol, copper sulfate and quinoclamine. Taken together, our results suggest that CNO containing higher anacardic acid can be used as an eco-friendly natural algicide for selective control of blue-green algae such as M. aeruginosa and O. tenuis through an optimization of application rate and in combination with synergists such as MSB and menadione.

Development of simple tools for algal bloom diagnosis in agricultural lakes (농업용 호소의 조류 발생 진단을 위한 간편 도구의 개발)

  • Nam, Gui-Sook;Lee, Seung-Heon;Jo, Hyun-Jung;Park, Joo-Hyun;Cho, Young-Cheol
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.433-445
    • /
    • 2019
  • This study was designed to develop simple tools to easily and efficiently predict the occurrence of algal bloom in agricultural lakes. Physicochemical water quality parameters were examined to reflect the phytoplankton productivity in 182 samples collected from 15 agricultural lakes from April to October 2018. Total phytoplankton abundance was significantly correlated with chlorophyll-a (Chl-a) (r=0.666) and Secchi depth (SD) (r= -0.351). The abundances of cyanobacteria and harmful cyanobacteria were also correlated with Chl-a (r=0.664, r=0.353) and SD (r= -0.340, r= -0.338), respectively, but not with total nitrogen (TN) and total phosphorus (TP). The Chl-a concentration was correlated with SD (r= -0.434), showing a higher similarity than phytoplankton abundance. Therefore, Chl-a and SD were selected as diagnostic factors for algal bloom prediction, instead of analyzing the standing crop of harmful cyanobacteria used in algae alarm systems. Specifically, accurate diagnoses were made using realtime SD measurements. The algal bloom diagnostic tool is an inverse cone-shaped container with an algal bloom diagnosis chart that modified SD and turbidity measurement methods. Lake water was collected to observe the number of rings visible in the container or the number indicated in each ring, depending on the degree of algal bloom,and to determine the final stage of algal blooming by comparison to the colorimetric level on the diagnosis chart. For an accurate diagnosis, we presented 4-step diagnostic criteria based on the concentration of Chl-a and the number of rings and a fan-shaped algal bloom diagnosis chart with Hexa code names. This tool eliminated the variables and errors of previous methods and the results were easily interpreted. This study is expected to facilitate the diagnosis of algal bloom in agricultural lakes and the establishment of an efficient algal bloom management plan.

Algicidal Characteristics of 1-Alkyl-3-Methylimidazolium Chloride Ionic Liquids to Several Fresh-water Algae (이온성 액체 1-alkyl-3-methylimidazolium chloride계 화합물의 담수조류에 대한 살조활성 특징)

  • Hwang, Hyun-Jin;Kim, Jae-Deog;Choi, Jung-Sup;Kim, Young-Wun;Kim, Jin-Seog
    • Korean Journal of Weed Science
    • /
    • v.30 no.3
    • /
    • pp.233-242
    • /
    • 2010
  • This study was conducted to know that if ionic liquids can be applicable as control agents of harmful algae in water-ecosystem and to find out problems caused by ionic liquid application. Firstly, the differential selectivity of various fresh-water algal species to several 1-alkyl-3-methylimidazolium chloride ionic liquids was investigated. There was a distinct differential response between alkyl chain lengths from butyl to dodecyl and towards the algal organisms : Generally algicidal activity was increased with increase of chain length and among the algae used in this study, Stephanodiscus hantzschii f. tenuis, Oscillatoria tenuis and Spirulina pratensis were most sensitive to 1-dodecyl-3-methylimidazolium chloride (MAIC12), next was Microcystis aeruginosa, and the others were relatively less sensitive to the chemical. The selectivity degree was about ten to twenty times based on the $EC_{80}$ (Effective concentration required for 80% growth inhibition). Secondly, an activity persistence of ionic liquids was investigated in natural mimic condition (using water bottle containing soil-sediments under the greenhouse condition). At the application of $1.0{\mu}g\;mL^{-1}$ of 1-octyl-3-methylimidazolium chloride (MAIC8), the algal growth did not occur at all until 6 days after treatment(DAT) and observed a only little growth at 9 DAT. But the algae grew rapidly after 9 DAT. So at 20 DAT, total chlorophylls was $264.4{\mu}g\;L^{-1}$ and the growth was inhibited by 58.2% compared to untreatment. On the other hand, MAIC12 also had a similar persistence pattern to MAIC8, showing nearly 5 times more activity than MAIC8. At 20 days after $0.2{\mu}g\;mL^{-1}$ application of MAIC12, that is, total chlorophylls was $251.2{\mu}g\;L^{-1}$ and the growth was inhibited by 55.2% compared to untreatment. In summary, 1-alkyl-3-methylimidazolium chloride ionic liquids is likely to be applicable for selective control of harmful algae as potent compounds having long lasting activity. However, the difficulty of degradation seems to be a limiting factor in an eco-friendly application of the compounds.

Grazing Effects of Freshwater Bivalve Unio douglasiae of the North Han River on the Cyanobacterial Bloom Waters (북한강 수계에 분포하는 말조개의 남조류 섭식특성)

  • Lee, Yeon-Ju;Kim, Baik-Ho;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.367-373
    • /
    • 2008
  • A freshwater bivalve (Unio douglasiae) was examined to assess the filtering rate (FR) on the cyanobacterial assemblage in a hypertrophic lake. Animal U. douglasiae used in the present study was collected using a hand-operated dredge from the North Han River (Gapyeong, Korea). The FR was measured at different feeding conditions such as feeding interval (1, 4, 7, and 24 h), mussel size (4.2$\sim$8.1 cm, n=23), prey concentration (506.7, 409.8, 327.5, 199.7 and 88.6 ${\mu}g\;L^{-1}$), and mussel density (0.5, 1.0 and 1.5 indiv. $L^{-1}$). On the applied feeding interval, the maximum FR (0.21 L $g^{-1}h^{-1}$) and minimum feces production (FP, 0.12 mg $g^{-1}h^{-1}$) were observed at 1 and 24 hr, respectively. Both weight-based FR and FP were not correlated with the mussel size, and the values lied in a limited range with some degree of variation. Likewise, no significant relations between FR and FP were observed in the mussel size. The FR values were negatively correlated with food concentration, but positively with FP. For the food concentrations, the maximum FR (0.41 L $g^{-1}h^{-1}$) and FP (0.16 mg $g^{-1}h^{-1}$) were 88.6 ${\mu}gL^{-1}$ and 327.5 ${\mu}gL^{-1}$, respectively. These results indicate that U. douglasiae collected from the North Han River, although the filtering rate were slightly less than Keum River mussel, may be applied as a strategic bio-filter to mitigate cyanobacterial bloom in eutrophic lake.