DOI QR코드

DOI QR Code

Global Occurrence of Harmful Cyanobacterial Blooms and N, P-limitation Strategy for Bloom Control

유해 남조류의 세계적 발생현황 및 녹조제어를 위한 질소와 인-제한 전략

  • Ahn, Chi-Yong (Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Chang Soo (Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Jae Woo (Center for Water Resource Cycle Research, Korea Institute of Science and Technology) ;
  • Lee, Sanghyup (Center for Water Resource Cycle Research, Korea Institute of Science and Technology) ;
  • Oh, Hee-Mock (Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 안치용 (한국생명공학연구원 바이오에너지연구센터) ;
  • 이창수 (한국생명공학연구원 바이오에너지연구센터) ;
  • 최재우 (한국과학기술연구원 물자원순환연구단) ;
  • 이상협 (한국과학기술연구원 물자원순환연구단) ;
  • 오희목 (한국생명공학연구원 바이오에너지연구센터)
  • Received : 2014.12.15
  • Accepted : 2015.02.03
  • Published : 2015.03.31

Abstract

Increased harmful algal blooms by cyanobacteria are threatening public health and limiting human activities related with freshwater ecosystems. Phosphorus (P) has long been suggested as a critical nutrient for cyanobacterial bloom through field research in Canada during the 1970s, proposing a P-based freshwater management guideline. However, recently, nitrogen (N) has also been highlighted as an impacting nutrient on cyanobacterial harmful algal blooms (CyanoHABs). Due to the intensive and frequent observation of Microcystis, this kind of paradigm shift from P limitation to season-dependent N or P limitation has an important implication for a dual nutrient management strategy in eutrophic freshwaters. Through recent international researches, general strategies to control CyanoHABs in lakes and reservoirs are as follows: a dual nutrient (N & P) reduction, wastewater collection and treatment, pre-treatment of influent water in buffer zones, dredging of sediment, reduction of residence time, algal collection, and precipitation and flocculation of cyanobacteria. In addition, sustainable and integrative freshwater algae management should be carried out, based on the ecological aspect, because cyanobacteria are not the target organism to be eradicated, but an essential microbial member in the freshwater ecosystem.

전세계적으로 2000년대 이후로 남조류에 의한 녹조의 발생이 증가하고 있으며, 이와 관련된 환경 문제가 공중건강을 위협하고 인간 활동을 제한하고 있다. 1970년대 캐나다의 호수를 중심으로 수행된 다년간의 현장 연구를 통하여, 녹조발생의 핵심적인 영양 제한인자로 인이 제시되었고, 인 저감에 대한 수계 관리가 진행되었다. 그러나 2000년대 이후, 대형 담수수계에서 특히 Microcystis에 의한 녹조 현상에서는 인뿐만 아니라 질소가 남조류 녹조 발생에 미치는 영향이 부각되고 있다. 한국의 담수 수계에서도 이와 비슷한 남조류에 의한 위해성 녹조 번성 특징을 갖고 있으므로, 이러한 패러다임의 변화는 국내 담수수계의 영양염류 관리에서 중요한 의미를 갖는다. 최근 국제적인 관련 연구를 통하여, 위해성 남조류 번성을 막기 위해 제안된 방법은 다음과 같다. 1) 질소와 인을 함께 관리하는 전략, 2) 폐수의 수집 및 처리, 3) 호소 유입수의 사전처리, 4) 저니의 준설, 5) 체류시간의 단축, 6) 조류의 효율적 회수법, 7) 조류의 침강 및 응집 등이 제시되고 있다. 추가적으로 남조류의 생태학적 특성에 기반한 지속가능하고 통합적인 담수수계의 녹조 관리기법이 수립되어야 한다. 녹조를 유발하는 남조류는 척결되어야 할 생물체가 아니라, 담수 수계에 필수적인 미생물 구성원이기 때문이다.

Keywords

References

  1. Ahn CY, JY Lee and HM Oh. 2013. Control of microalgal growth and competition by N:P ratio manipulation. Korean J. Environ. Biol. 31:61-68. https://doi.org/10.11626/KJEB.2013.31.2.061
  2. Carpenter SR. 2008. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA. 105:11039-11040. https://doi.org/10.1073/pnas.0806112105
  3. Conley DJ, HW Paerl, RW Howarth, DF Boesch, SP Seitzinger, KE Havens, C Lancelot and G Likens. 2009. Controlling eutrophication: Nitrogen and phosphorus. Science 323:1014-1015. https://doi.org/10.1126/science.1167755
  4. Lee CS, CY Ahn, HJ La, S Lee and HM Oh. 2013. Technical and strategic approach for the control of cyanobacterial bloom in fresh waters. Korean J. Environ. Biol. 31:233-242. https://doi.org/10.11626/KJEB.2013.31.4.233
  5. Michalak AM, EJ Anderson, D Beletsky, S Boland, NS Bosch, TB Bridgeman, JD Chaffin, K Cho, R Confesor, I Daloglu, JV DePinto, MA Evans, GL Fahnenstiel, L He, JC Ho, L Jenkins, TH Johengen, KC Kuo, E LaPorte, X Liu, MR McWilliams, MR Moore, DJ Posselt, RP Richards, D Scavia, AL Steiner, E Verhamme, DM Wright and MA Zagorski. 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl. Acad. Sci. USA. 110: 6448-6452. https://doi.org/10.1073/pnas.1216006110
  6. Paerl HW, H Xu, MJ McCarthy, G Zhu, B Qin, Y Li and WS Gardner. 2011a. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 45:1973-1983. https://doi.org/10.1016/j.watres.2010.09.018
  7. Paerl HW, H Xu, NS Hall, TG Otten, G Zhu, KL Rossignol and B Qin. 2014a. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. The 16th International Conference on Harmful Algae. 27-31 October 2014, Wellington, New Zealand.
  8. Paerl HW, NS Hall and S Calandrino. 2011b. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409:1739-1745. https://doi.org/10.1016/j.scitotenv.2011.02.001
  9. Paerl HW, WS Gardner, MJ McCarthy, BL Peierls and SW Wilhelm. 2014b. Algal blooms: Noteworthy nitrogen. Science 346:175.
  10. Park SB. 2012. Algal blooms hit South Korean rivers. Nature News doi:10.1038/nature.2012.11221
  11. Qu M, DD Lefebvre, Y Wang, Y Qu, D Zhu and W Ren. 2014. Algal blooms: proactive strategy. Science 346:175-176.
  12. Redfield AC. 1934. On the proportions of organic derivations in sea water and their relation to the composition of plankton. pp.177-192. In James Johnstone Memorial Volume. (Daniel RJ ed.). University Press of Liverpool.
  13. Rhee GY. 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnol. Oceanogr. 23:10-25. https://doi.org/10.4319/lo.1978.23.1.0010
  14. Schindler DW. 1974. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184: 897-899. https://doi.org/10.1126/science.184.4139.897
  15. Schindler DW. 1977. Evolution of phosphorus limitation in lakes. Science 195:260-262. https://doi.org/10.1126/science.195.4275.260
  16. Schindler DW. 2012. The dilemma of controlling cultural eutrophication of lakes. Proc. Biol. Sci. 279:4322-4333. https://doi.org/10.1098/rspb.2012.1032
  17. Schindler DW, RE Hecky, DL Findlay, MP Stainton, BR Parker, MJ Paterson, KG Beaty, M Lyng and SEM Kasian. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA. 105:11254-11258. https://doi.org/10.1073/pnas.0805108105
  18. Scott JT and MJ McCarthy. 2010. Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnol. Oceanogr. 55:1265-1270. https://doi.org/10.4319/lo.2010.55.3.1265
  19. Smith VH and DW Schindler. 2009. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 24:201-207. https://doi.org/10.1016/j.tree.2008.11.009
  20. Srivastava A, CY Ahn, RK Asthana, HG Lee and HM Oh. 2015. Status, alert system, and prediction of cyanobacterial bloom in South Korea. BioMed Res. Int. 2015: Article ID 584696.
  21. Tilman D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, 296 pp.
  22. Wines M. 2014. Behind Toledo's Water Crisis, a Long-Troubled Lake Erie. The New York Times, Aug. 4.
  23. Wood SA, AI Selwood, A Rueckert, PT Holland, JR Milne, KF Smith, B Smits, LF Watts and CS Cary. 2007. First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon 50:292-301. https://doi.org/10.1016/j.toxicon.2007.03.025