DOI QR코드

DOI QR Code

Algicidal Characteristics of 1-Alkyl-3-Methylimidazolium Chloride Ionic Liquids to Several Fresh-water Algae

이온성 액체 1-alkyl-3-methylimidazolium chloride계 화합물의 담수조류에 대한 살조활성 특징

  • Hwang, Hyun-Jin (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jae-Deog (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Jung-Sup (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Young-Wun (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Seog (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
  • 황현진 (한국화학연구원 산업바이오화학연구센터) ;
  • 김재덕 (한국화학연구원 산업바이오화학연구센터) ;
  • 최정섭 (한국화학연구원 산업바이오화학연구센터) ;
  • 김영운 (한국화학연구원 산업바이오화학연구센터) ;
  • 김진석 (한국화학연구원 산업바이오화학연구센터)
  • Received : 2010.08.30
  • Accepted : 2010.09.13
  • Published : 2010.09.30

Abstract

This study was conducted to know that if ionic liquids can be applicable as control agents of harmful algae in water-ecosystem and to find out problems caused by ionic liquid application. Firstly, the differential selectivity of various fresh-water algal species to several 1-alkyl-3-methylimidazolium chloride ionic liquids was investigated. There was a distinct differential response between alkyl chain lengths from butyl to dodecyl and towards the algal organisms : Generally algicidal activity was increased with increase of chain length and among the algae used in this study, Stephanodiscus hantzschii f. tenuis, Oscillatoria tenuis and Spirulina pratensis were most sensitive to 1-dodecyl-3-methylimidazolium chloride (MAIC12), next was Microcystis aeruginosa, and the others were relatively less sensitive to the chemical. The selectivity degree was about ten to twenty times based on the $EC_{80}$ (Effective concentration required for 80% growth inhibition). Secondly, an activity persistence of ionic liquids was investigated in natural mimic condition (using water bottle containing soil-sediments under the greenhouse condition). At the application of $1.0{\mu}g\;mL^{-1}$ of 1-octyl-3-methylimidazolium chloride (MAIC8), the algal growth did not occur at all until 6 days after treatment(DAT) and observed a only little growth at 9 DAT. But the algae grew rapidly after 9 DAT. So at 20 DAT, total chlorophylls was $264.4{\mu}g\;L^{-1}$ and the growth was inhibited by 58.2% compared to untreatment. On the other hand, MAIC12 also had a similar persistence pattern to MAIC8, showing nearly 5 times more activity than MAIC8. At 20 days after $0.2{\mu}g\;mL^{-1}$ application of MAIC12, that is, total chlorophylls was $251.2{\mu}g\;L^{-1}$ and the growth was inhibited by 55.2% compared to untreatment. In summary, 1-alkyl-3-methylimidazolium chloride ionic liquids is likely to be applicable for selective control of harmful algae as potent compounds having long lasting activity. However, the difficulty of degradation seems to be a limiting factor in an eco-friendly application of the compounds.

본 연구에서는 1-alkyl-3-methylimidazolium chloride계 이온성 액체를 가지고 수생태계에서의 유해조류 방제제로서의 사용 가능성 및 활용시 예상되는 문제점 등을 알아보기 위하여 5종의 녹조류, 4종의 남조류, 1종의 규조류를 대상으로 이들의 생육에 미치는 이온성 액체의 선택적 영향을 검토해 보고자 실시하였다. 이온성 액체의 alkyl group 탄소수에 따라 활성이 달리 나타났는바, butyl < octy l< dodecyl 순으로 탄소수 길이가 길수록 살조활성이 증가되는 경향이었다. 공시된 조류종 전체를 비교해 보았을 때, Stephanodiscus hantzschii f. tenuis, Oscillatoria tenuis, Spirulina pratensis가 1-dodecyl-3-methylimidazolium chloride (MAIC12)에 민감한 생육억제 반응을 보이며 그 다음은 Microcystis aeruginosa이었고, 나머지 조류 종은 상대적으로 덜 민감하였다. 선택성 정도는 80% 억제농도를 기준하여 검토해 보았을 때 대략 10-20배 정도였다. 한편 자연상태와 비슷한 조건(온실조건의 퇴적물 존재)에서 이온성 액체가 수중에 처리되었을 때의 살조활성 지속성을 조사하였다. 그 결과 MAIC8 $1.0{\mu}g\;mL^{-1}$ 농도에서는 처리후 6일까지 생장이 중지되었다가 9일째에는 조류가 약간 발생하였으며 이후 생장이 뚜렷하게 증가하는 경향으로서 20일째에는 엽록소 함량이 $264.4{\mu}g\;L^{-1}$로서 무처리 대비 58.2% 생장을 나타냈다. MAIC12의 경우는 MAIC8 보다 약 5배 높은 활성을 나타내는 경향으로서 $0.2{\mu}g\;mL^{-1}$ 농도로 처리했을 때 처리후 6일까지 조류발생이 전혀 없었다가 9일째에는 조류가 약간 번식하였으며 이후 생장이 비교적 뚜렷하게 증가하여 20일째에는 엽록소 함량이 $251.2{\mu}g\;L^{-1}$로서 무처리 대비 55.2% 생장을 나타냈다. 결론적으로 1-alkyl-3-methylimidazolium chloride계 이온성 액체는 살조활성 특성 측면에서 볼 때는 우수한 효능, 선택적 살조활성 및 효과 지속성으로 인해 수생태계에서의 유해조류 선택적 방제제로서 사용될 수 있을 것 같았으나, 화합물 분해 측면에서 볼 때는 상대적으로 난분해성 특성을 가져 환경친화적으로 사용하기에는 개선될 필요성이 있는 것 같았다.

Keywords

References

  1. 박명환, 김건희, 이혁희, 김진석, 황순진. 2009. 여러 가지 은나노 물질의 유해 남조 Microcystis aeruginosa 생장억제. 한국육수학회지 42(1):75-84.
  2. 최정섭, 황현진, 서보람, 김재덕, 장현우, 김진석. 2009. 약용식물로부터 살조(殺藻)활성을 갖는 sesquiterpene계 화합물의 분리 및 동정. 한국잡초학회지 29(2):121-130.
  3. 황현진, 서보람, 김재덕, 장현우, 최정섭, 김진석. 2009 약용식물유래 sesquiterpene에 화합물의 담수조류 생육억제활성 특성. 한국잡초학회지 29(4):343-352.
  4. Allen, M. M. 1968. Simple conditions for the growth of unicellular bluc-grecn algae on plates. Journal of Phycology 4:1-4.
  5. Beakes, G., H. M. Canter and G. H. M. Jaworski. 1988. Zoospores ultrastructure of Zygorhizidium affiuens Canter and Z. planktonicum Canter, two chytrids parasitizing the diatom Asterionella formosa Hassall. Canadian Journal of Botany-Review Canadienne De Botanique 66:1054-1067. https://doi.org/10.1139/b88-151
  6. Cho, C. W., Y. C. Jeon, T. P. T. Pham, K. Vijayaraghavan and Y. S. Yun. 2008. The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicology and Environmental Safety 71: 166-171. https://doi.org/10.1016/j.ecoenv.2007.07.001
  7. Duke, S. O., F. E. Dayan, A. M. Rimando, K. K. Schrader, G. Aliotta, A. Oliva and J. G. Romagni. 2002. Chemicals from nature for weed management. Weed Science 50:138-151. https://doi.org/10.1614/0043-1745(2002)050[0138:IPCFNF]2.0.CO;2
  8. Gathergood, N., P. J. Scammells and M. T. Garcia. 2006. Biodegradable ionic liquids Part III. The first readily biodegradable ionic liquids. Green Chem. 8:156-160. https://doi.org/10.1039/b516206h
  9. Haider, S., V. Naithani, P. N. Viswanathan and P. Kakkar. 2003. Cyanobacterial toxins : a growing environmental concern. Chemosphere 52:1-21. https://doi.org/10.1016/S0045-6535(03)00032-8
  10. Kim, J. S., J. C. Kim, S. Lee, B. H. Lee and K. Y. Cho. 2006. Biological activity of L-2-azetidinecarboxylic acid, isolated from Polygonatum odoratum var. pluriflorum, against several algae. Aquatic Botany 85:1-6. https://doi.org/10.1016/j.aquabot.2006.01.003
  11. Kulacki, K. J. and G. A. Lamberti. 2007. Toxicity of imidazolium ionic liquids to fresh-water algae. Green Chem. 10:104-110.
  12. Latala, A., M. Nedzia and P. Stepnowski. 2009a. Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms). Green Chem. 11:580-588. https://doi.org/10.1039/b821140j
  13. Latala, A., M. Nedzia and P. Stepnowski. 2009b. Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Bacillaria paxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga). Green Chem. 11:1371-1376. https://doi.org/10.1039/b901887e
  14. Munoz, R. and B. Guieysse. 2006. Algal-bacterial processes for the treatment of hazardous contaminants : A review. Water Research 40:2799-2815. https://doi.org/10.1016/j.watres.2006.06.011
  15. Nusch, E. A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. (Ergebn. Limnol.) 14: 14-36.
  16. Olivier-Bourbigou, H., L. Magna and D. Morvan. 2010. Ionic liquids and catalysis : Recent progress from knowledge to applications. Applied Catalysis A : General 373:1-56. https://doi.org/10.1016/j.apcata.2009.10.008
  17. Pham, T. P. T., C. W. Cho, J. Min and Y. S. Yun. 2008. Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthetic response of Pseudokirclineriella subcapilata. J. Biosci. Bioengin. 105(4):425-428. https://doi.org/10.1263/jbb.105.425
  18. Pham, T. P. T., C. W. Cho and Y. S. Yun. 2010. Environmental fate and toxicity of ionic liquids : A review. Water Research 44:352-372. https://doi.org/10.1016/j.watres.2009.09.030
  19. Schenk P. M., S. R. Thomas-Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse and B. Hankamer. 2008. Second generation biofuels : High-efficiency microalgae for bio-diesel production. Bioenerg. Res. 1:20-43. https://doi.org/10.1007/s12155-008-9008-8
  20. Sin, J. G., and C. S. Im. 2000. A study on the water quality simulation in the midstream and down-stream of Geum-river. J. Kor. Water Resources Association 33(2): 145-157.
  21. Stolte, S., M. Matzke, J. Arning, A. Boschen, W. R. Pitner, U. Welz-Biermann, B. Jastorff and J. Ranke. 2007. Effects of different head groups and functionalized side chains on the aquatic toxicity of ionic liquids. Green Chem. 9:1170-1179. https://doi.org/10.1039/b711119c
  22. Wu, G., H. Kang, X. Zhang, H. Shao, L. Chu and C. Ruan. 2010. A critical review on the bio-removal of hazardous heavy metals from contaminated soils : Issues, progress, eco-environmental concerns and opportunities. J. of Hazardous Materials 174:1-8. https://doi.org/10.1016/j.jhazmat.2009.09.113
  23. Zhao, D., Y. Liao and Z. Zhang. 2007. Toxicity of ionic liquids. Clean 35(1):42-48.