• Title/Summary/Keyword: 유한 차분 방법

Search Result 395, Processing Time 0.026 seconds

Dynamic Algorithm for Solid Problems using MLS Difference Method (MLS 차분법을 이용한 고체역학 문제의 동적해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2012
  • The MLS(Moving Least Squares) Difference Method is a numerical scheme that combines the MLS method of Meshfree method and Taylor expansion involving not numerical quadrature or mesh structure but only nodes. This paper presents an dynamic algorithm of MLS difference method for solving transient solid mechanics problems. The developed algorithm performs time integration by using Newmark method and directly discretizes strong forms. It is very convenient to increase the order of Taylor polynomial because derivative approximations are obtained by the Taylor series expanded by MLS method without real differentiation. The accuracy and efficiency of the dynamic algorithm are verified through numerical experiments. Numerical results converge very well to the closed-form solutions and show less oscillation and periodic error than FEM(Finite Element Method).

On the Dynamic Analysis of Cables for ROV Implementation (무인 잠수정 연결 케이블의 동적거동 해석에 관한 연구)

  • Yi, Woo-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.45-54
    • /
    • 1991
  • 본 논문은 케이블-ROV 시스템의 동적거동 규명을 위한 효과적인 해석방법에 대한 고찰이다. 해석방법에 대하여 일차적으로 연구하고 해석방법에 따른 소프트웨어를 개발하여 3차원 케이블-ROV 시스템 거동을 수치적으로 해석하였으며 같은 모델에 대한 거동을 실제 실험을 통하여 연구분석 하였다. 수치해석과 실험결과를 비교 검토하였고 여러가지 관련 문제점에 대해서도 연구하였다.

  • PDF

Three-dimensional Finite-difference Time-domain Modeling of Ground-penetrating Radar Survey for Detection of Underground Cavity (지하공동 탐지를 위한 3차원 시간영역 유한차분 GPR 탐사 모델링)

  • Jang, Hannuree;Kim, Hee Joon;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • Recently many sinkholes have appeared in urban areas of Korea, threatening public safety. To predict the occurrence of sinkholes, it is necessary to investigate the existence of cavity under urban roads. Ground-penetrating radar (GPR) has been recognized as an effective means for detecting underground cavity in urban areas. In order to improve the understanding of the governing physical processes associated with GPR wave propagation, and interpret underground cavity effectively, a theoretical approach using numerical modeling is required. We have developed an algorithm employing a three-dimensional (3D) staggered-grid finite-difference time-domain (FDTD) method. This approach allows us to model the full electromagnetic wavefield associated with GPR surveys. We examined the GPR response for a simple cavity model, and the modeling results showed that our 3D FDTD modeling algorithm is useful to assess the underground cavity under urban roads.

Failure Strength Analysis of Simply Supported Sandwich Slab Bridges made by Composite Materials (복합재료로 만들어진 단순지지 샌드위치 슬래브 교량의 파괴강도해석)

  • Han, Bong-Koo;Kim, Se-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • In this paper presented, a design method of sandwich slab bridge of simple supported made by composite materials. Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with sections, boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Thus, Finite Difference Method is used for analysis of the pertinent problem. For the design of bridge made by the composite materials, cross-section is used the form-core shape because of this shape is economical and profitable, and for output of the stress value used F.D.M. Based the experimental of a composite specialist, an equation expressing the rate of decrease of tensile strength of glass fibers based on increase of mass was obtained. From these equations, one can estimate the rate of tensile strength reduction due to increased size. Tasi-Wu failure criterion for stress space is used. Strength-failure analysis procedure, using these reduced tensile strength, is presented.

Reinforcing Effect of a Soil Nailing on Plane Failure of a Slope by Comparing Finite Difference Analysis with Limit Equilibrium Analysis (유한차분해석과 한계평형해석의 비교를 통한 평면파괴 사면 쏘일네일링 보강효과 연구)

  • You, Kwang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.5-15
    • /
    • 2014
  • It is very important to design and construct slopes safely because damage cases are increasing due to slope failure. Recently, Limit Equilibrium Method (LEM) based programs are commonly used for slope designs. Though LEM can give factors of safety through simple calculation, it has a disadvantage that the sliding surface should be assumed in advance. On the other hand, the use of Finite Difference Method (FDM) is increasing since the factor of safety can be easily estimated by using shear strength reduction technique. Therefore the purpose of this study is to present a reasonable slope design methodology by comparing the two commonly used analysis approaches; LEM and FDM. To this end, the reinforcement effects of the two methods were compared in terms of the support pattern of soil nailing reinforced in the section where plane failure is anticipated. As a result, the reinforcement effects by nail angle and nail spacing turned out to be equal. Also it was found that the factor of safety increased in LEM, but not changed in FDM when the nail length increased.

Thermal Transfer Analysis of Micro Flow Sensor Based on Excel (Excel을 이용한 마이크로 흐름센서의 열전달 해석)

  • Kim Tae-Yong;Chung Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.251-254
    • /
    • 2006
  • 마이크로 흐름센서는 종래의 반도체 집적회로 공정기술을 이용하여 소형으로 제작이 가능하며, 빠른 응답특성을 가지는 장점이 있어 다양한 응용이 기대되고 있다. 본 연구에서는 넓은 흐름의 세기영역에서 정밀한 감도를 가지는 2차원 마이크로 흐름센서를 실리콘 기판위에 설계하여 왔다. 이러한 흐름센서의 정확한 온도특성을 분석하고 이 결과로부터 최적을 온도 감지막 위치를 결정할 필요가 있다. 설계방법으로서 표계산 소프트웨어 Excel을 이용하여 열운송방정식의 차분 방정식을 매크로 기능을 이용하여 적용하고 워크시트 내에서 셀 참조방식을 활용하여 자동 계산을 수행하도록 구현하였다. 본 연구에서는 Excel을 활용한 효율적인 설계방법을 제시하고 하나의 히터와 양측에 한 쌍의 온도 감지막을 가진 마이크로 흐름센서에 대해서 열전달 특성을 계산하고 이로부터 최적을 온도 감지막 위치를 결정할 수 있었다.

  • PDF

Review and Analysis of Boundary Conditions for SPH Particles (SPH 입자의 경계조건 분석 및 해석)

  • Lee, Min-A;Tak, Moon-Ho;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.756-759
    • /
    • 2011
  • 일반적으로 컴퓨터를 이용한 수치 해석에는 격자 수치 해석 방법인 유한요소법 또는 유한차분법이 주로 사용되어 왔다. 그러나 이러한 방법들은 해석하고자 하는 영역을 요소나 격자 등으로 분할해야 하기 때문에 복잡한 현상들을 다루는 데 어려움을 갖게 된다. 이를 극복하기 위해 개발된 방법이 무요소법(Meshfree Method)이며 본 논문에서는 다양한 무요소법들 중 SPH(Smoothed Particle Hydrodynamics)가 고려되어진다. SPH는 라그랑지안 수치 근사 기법을 사용하는 입자법(Particle Method)으로 SPH를 정확하게 실행하기 위해서는 적절한 경계 처리법이 요구된다. 그러나 기존의 경계 처리법은 유체 입자의 침투현상 및 커널(Kernel) 끊김 현상이 발생하기 때문에 적합하지 않다. 따라서 지금까지 SPH의 경계 처리법을 향상시키기 위해 다양한 접근법들이 제안되었으며 본 논문에서는 이러한 접근법들 중 정반사(Specular Reflection), 재회복(Bounce-back), 재도입(Reintroduce) 방법 및 경계 반발력(Repulsive Force)과 가상 입자(Ghost Particle)의 적용이 분석되고 현상 접목을 통해 적절한 경계 처리법이 제안되어진다.

  • PDF

Slope Stability Analysis by Slice Method and Finite Difference Method- A Comparative Study - (절편법과 유한차분법에 의한 사면안정해석 비교연구)

  • 박연준;채영수;유광호;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.263-272
    • /
    • 1999
  • Slice method is commonly used in solving slope stability problems since it is easy to use and its computation time is rather short. But depending upon the assumptions on the inter-slice forces, different methods are available. Quite often the difference between methods are so big that it is very difficult to make engineering decisions. This paper describes a method to calculate the factor of safety of a slope using FLAC, a finite difference based program. A FISH routine is developed to calculate the factor of safety, and verified by comparing with Chen's limit equilibrium solution. An example problem was selected from Fredlund and Krhan's paper, and results were compared for different soil and water conditions. The difference was less than 0.01 when the soil is homogeneous, and less than 5 % when a weak layer is embedded. Since most geotechnical application programs are capable of considering complicated ground conditions as well as the effect of ground supports, numerical methods are believed to be very useful in making engineering decisions. The developed routine can be applied to the calculation of the factor of safety of jointed rock slopes or weathered rock slopes where the use of slice method is limited.

  • PDF

Numerical simulation of upper convected maxwell fluid flow through planar 4:1 contraction (평면 4:1 수축을 지나는 어퍼 콘벡티트 맥스웰유체 유동의 수치 시뮬레이션)

  • 송진호;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.160-169
    • /
    • 1987
  • Numerical simulation of the flow of upper convected Maxwell fluid through planar 4:1 contraction has been performed using type dependent difference apprximation of vorticity equation. For creeping flow assumption, the numerical convergence has been achieved up to much higher values of elasticity parameter than those obtained by conventional finite difference method. For non-vanishing Reynolds number flow, it is shown that the corner vortices disappear, which is in good qualitative agreement with extant experimental results. In doing so, spatial distributions of stream function, vorticity and stresses are considered in relation to change of type of vorticity.

Improving the Slope Calculation Method for Evaluating the Feasibility of the Land Development (토지 개발 적정성 평가를 위한 경사도 계산 방법 개선)

  • Lee, Byoung Kil
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.85-92
    • /
    • 2016
  • Slope is one of the most important factor in land development permission standards. In guideline of "Land Suitability Assessment" or "Forest Land Conversion Standard", average slope can be measured using digital map and GIS for target area. Inputs in slope calculation are 1/5,000 digital map of NGII(National Geographic Information Institute) or digital information of Korea Land Information System. Many confusions occur in the field, as there is no standard for slope calculation and are lots of slope calculation methods using contour lines or DEM derived from them. Avoiding these confusions, this study was intended to propose a standardized method for slope calculation and a selection method for a suitable resolution. In this study, using DEM of optimum grid size according to the complexity of topography with finite difference method is suggested as improved slope calculation method, after comparing several representative slope calculation methods.