• Title/Summary/Keyword: 유출성분

Search Result 397, Processing Time 0.033 seconds

Comparing of Hydrograph Separation in deciduous and coniferous catchments using the End-Member Mixing Analysis (End-Member Mixing Analysis를 이용한 산림 소유역의 임상별 유출분리 비교)

  • Kim, Su-Jin;Choi, Hyung Tae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.77-85
    • /
    • 2016
  • To understand the difference of runoff discharge processes between Gwangneung deciduous and coniferous forest catchments, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge) and conducted hydrochemical analyses in the deciduous and coniferous forest catchments in Gwangneung National Arboretum in the northwest part of South Korea. Based on the end-member mixing analysis of the three storm events during the summer monsoon in 2005, the hillslope runoff in the deciduous forest catchment was higher 20% than the coniferousforest catchment during the firststorm event. Howerver, hillslope runoff increased from the second storm event in the coniferous catchment. We conclude that low soil water contents and topographical gradient characteristics highly influence runoff in the coniferous forest catchment during the first storm events. In general, coniferous forests are shown high interception loss and low soil moisture compared to the deciduous forests. It may also be more likely to be a reduction in soil porosity development when artificial coniferous forests reduced soil biodiversity. The forest soil porosity is an important indicator to determine the water recharge of the forest. Therefore, in order to secure the water resources, it should be managed coniferous forests for improving soil biodiversity and porosity.

Morphological Changes of the Beach and Foredune by Sand Fences - A Case of Shindu Coastal Dune Area - (사구울타리 설치 후 해빈과 전사구의 지형 변화 - 신두리 해안사구를 사례로 -)

  • SEO, Jong Cheol
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.85-93
    • /
    • 2010
  • After the notorious Taean Oil spill in Dec. 2007, a series of sand fences made of fishing net were installed in front of foredune in Shindu dune area. This paper aims to understand the temporal and spatial characteristics of morphological changes of the beach and foredune. About 1m high sand accumulated around sand fences for the last 2 years. While a lot of sand deposited during the winter season (from autumn to spring), small amount of sand eroded and deposited during summer season (from spring to autumn) without big morphological changes. These results mean that sand fences help nature deposit sand near beach and foredune area.

Characteristics of Pesticide Runoff and Persistence on Agricultural Watersheds in Korea (영농지역에서 작물재배 형태에 따른 농약의 잔류성과 유출특성)

  • Park, Byung-Jun;Kwon, Oh-Kyung;Kim, Jin-Kyoung;Kim, Jin-Bea;Kim, Jin-Ho;Yoon, Soon-Kang;Shim, Jae-Han;Hong, Moo-Gi
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.194-201
    • /
    • 2009
  • To evaluate the exposure of non-point source pesticide pollution in agricultural watershed and to investigate pesticide distribution and runoff from agricultural land, paddy field, upland and orchard, this experiment was carry out during crop growing seasons. The pesticide were detected twenty pesticides fungicide 4, insecticide 10, herbicide 6) in water of Neungchon agricultural watershed and detection concentrations were range 0.008${\sim}$7.59 ppb. Most of the detection pesticides were using pesticides to rice paddy fields to control fungi, insects, weeds. During the crop cultivation, the pesticide were detected total thirty pesticides by pepper field soil 6, orchard soil 4, sesame field soil 3 and rice paddy field soil 5, and pesticide concentrations were range 0.001${\sim}$0.109 ppm. Especially the herbicides were detected mainly in May and June in the stream water. The pesticide were detected thirty pesticides by fungicide 2, insecticide 6, herbicide 5 in water of Jungam Koseong agricultural watershed and detection concentrations were range 0.01${\sim}$7.21 ppb. In regard to the detected pesticides, the concentration of individual pesticides measured in surface water of the study areas never exceeded guidelines for agriculture chemicals concerning water quality-effluent from paddy fields in Japan (Katayama, 2003). Runoff rate of pesticides was range 0.07${\sim}$3.06 % from Kongju agricultural land to watershed after applied pesticides.

Furrow Covering Effects with Rice Straw on Nutrient Discharge from Upland Soil Used for Red Pepper Cultivation (고추밭 고랑 볏짚피복에 의한 양분유출 특성)

  • Hong, Seung-Chang;Kim, Min-Kyeong;Jung, Goo-Buk;So, Kyu-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Excessive application of nutrient supplement on the upland soil may increase the amount of discharge to surrounding water systems. The chemical fertilizer (CF), cow manure compost (CMC), and pig manure compost (PMC) are used as a nutrient supplement for cultivation of red pepper. Rice straws are widely used as a soil covering material in order to reduce weed occurrence, to protect soil moisture, and to supply organic matter in upland soil. This study was conducted to evaluate the furrow covering effect with rice straw on nutrient discharge in upland soil used for red pepper cultivation. The experimental plots of nutrient supplement were consisted of CF, CMC, and PMC and the amount of nutrient application were as recommended amount after soil test for red pepper cultivation. Each nutrient supplement treatment plot has no furrow covering (CFC) as a control and furrow covering with rice straw (FCS), respectively. Furrow covering with rice straw (FCS) of CF treatment and CMC treatment reduced the amount of T-N(total nitrogen) discharge by $1.4kg\;ha^{-1}$, $2.1kg\;ha^{-1}$, respectively, compared to control. While the amount of T-P(total phosphorus) discharge of the furrow covering with rice straw of CF, CMC, and PMC increased by $2.1kg\;ha^{-1}$, $2.1kg\;ha^{-1}$, and $0.2kg\;ha^{-1}$, respectively, compared to control. The phosphorus and nitrogen content of straw were 0.4 % and 0.3 % respectively. In addition, in three week the phosphorus was eluted from the straw which soaked in distilled water. Thus, it was assumed that T-P discharging originated from rice straw which applied as a furrow covering material. The furrow covering with rice straw reduced weed occurrence compared to control. But production of fresh red pepper was not influenced significantly by furrow covering with rice straw. In conclusion, excessive furrow covering with rice straw could induce T-P discharge from upland soil used for red pepper cultivation. Further studies are needed to evaluate the appropriate amount of rice straw as a furrow covering material.

Regression Modeling of Water-balance in Watershed (유역(流域) 물 수지(收支)의 회귀모형화(回歸模型化))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.324-333
    • /
    • 1983
  • Modeling of longterm runoff is theoritically based on waterbalance analysis. Simplified equation of water balance with rainfall, evapotranspiration and soil moisture storage could be formulated into regression model with variables of rainfall, pan evaporation and previous-month streamflow. The hydrologic response of water shed could be represented lumpedly, qualitatively and deductively by regression coefficients of water-balance regression model. Characteristics of regression modeling of water-balance were summarized as follows; 1. Regression coefficient $b_1$ represents the rate of direct runoff component of precipitation. The bigger the drainage area, the less $b_1$ value. This means that there are more losses of interception, surface detension and transmission in the downstream watershed. 2. Regression coefficient $b_2$ represents the rate of baseflow due to changes of soil moisture storage. The bigger the drainage area and the milder the watershed slope, the bigger b, value. This means that there are more storage capacity of watershed in mild downstream watershed. 3. Regression coefficient $b_3$ represents the rate of watershed evaporation. This depends on the s oil type, soil coverage and soil moisture status. The bigger the drainage area, the bigger $b_3$ value. This means that there are more watershed evaporation loss since more storage of surface and subsurface water would be in down stream watershed. 4. It was possible to explain the seasonal variation of streamflow reasonably through regress ion coefficients. 5. Percentages of beta coefficients what is a relative measure of the importance of rainfall, evaporation and soil moisture storage to month streamflow are approximately 89%, 9% and 11% respectively.

  • PDF

Runoff of Endosulfan by Rainfall Simulation and from Soybean-grown Field Lysimeter (인공강우와 콩재배 포장 라이시메타를 이용한 endosulfan의 유출량 평가)

  • Kim, Chan-Sub;Lee, Hee-Dong;Ihm, Yang-Bin;Im, Geon-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2007
  • Three different experiments were carried out to investigate the runoff and erosion losses of endosulfan from sloped-field by rainfall. The mobility of endosulfan and which phase it was transported by were examined in adsorption study, the influence of rainfall pattern and slope degree on the pesticide loss were evaluated in simulated rainfall study, and the pesticide losses from soybean-grown field comparing with bare soil were measured in field lysimeter study. Adsorption parameter (K) of endosulfan ranged from 77 to 131 by adsorption method and K values by the desorption method were higher than those by the adsorption method. By the SSLRC's classification for pesticide mobility endosulfan was classified as non-mobile class ($K_{oc}>4,000$). Runoff and erosion loss of endosulfan by three rainfall scenarios ranged from 3.4 to 5.6%and from 4.4 to 15.6%of the amount treated. Endosulfan residues were mainly remained at the top 5 cm of soil depth after the simulated rainfall study. Pesticide loss in case of 30%-slope degree ranged from 0.6 to 0.9 times higher than those in case of 10%-slope degree. The difference of pesticide runoff loss was related with its concentration in runoff water and the difference of pesticide erosion loss would related closely with the quantity of soil eroded. Endosulfan losses from a series of lysimeter plots in sloped land by rainfall ranged from 5 to 35% of the amount treated. The erosion rate of endosulfan from soybean-plots was 66% of that from bare soil plots. The effect of slope conditions was not great for runoff loss, but was great for erosion loss as increasing to maximum $4{\sim}12$ times with slope degree and slope length. The peak runoff concentration of endosulfan in soybean-plots and bare soil plots ranged from 8 to 10 and from 7 to $9{\mu}gL^{-1}$ on nine plots with different slope degree and slope length. Therefore the difference of the peak runoff concentrations between bare soil plots and soybean-plots were not great.

Runoff of Diazinon and Metolachlor by Rainfall Simulation and from Soybean Field Lysimeter (인공강우와 콩재배 포장 라이시메타를 이용한 diazinon과 metolachlor의 유출량 평가)

  • Kim, Chan-Sub;Lee, Byung-Moo;Park, Byung-Jun;Jung, Pil-Kyun;Choi, Ju-Hyeon;Ryu, Gab-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.279-288
    • /
    • 2006
  • Three different experiments were undertaken to investigate the runoff and erosion loss of diazinon and metolachlor from sloped-field by rainfall. The mobility of two pesticides and which phase they were transported by were examined in adsorption study, the influence of rainfall pattern and slope degree on the pesticide losses were evaluated in simulated rainfall study, and the pesticide losses from soybean field comparing with bare soil were measured in field lysimeter study. Freundlich adsorption parameter (K) ranged $1.6{\sim}2.0$ for metolachlor and $4.0{\sim}5.5$ for diazinon. The K values of pesticides by the desorption method were higher than those ones by the adsorption method. Another parameter (1/n) in Freundlich equation for the pesticides tested ranged $0.96{\sim}1.02$ by desorption method and $0.87{\sim}1.02$ by adsorption method. By the SSLRC's classification for pesticide mobility of diazinon and metolachlor were classified as moderately mobile ($75{\leq}Koc$ <500). Runoff and erosion losses of pesticides by three rainfall scenarios were $0.5{\sim}1.0%$ and $0.1{\sim}0.7%$ for metolachlor and $0.1{\sim}0.6%$ and $0.1{\sim}0.2%$ for diazinon. Distribution of pesticides in soil polite were investigated after the simulated rainfall events. Metolachlor was leached to $10{\sim}15$ cm soil layer and diazinon was leached to $5{\sim}10$ cm soil layer. Losses of each pesticide in the 30% of sloping degree treatment were $0.2{\sim}1.9$ times higher than those ones in the 10% of sloping degree treatment. Pesticide losses from a series of lysimeter plots in sloped land by rainfall ranged $1.0{\sim}3.1%$ for metolachlor and $0.23{\sim}0.50%$ for diazinon, and were $1/3{\sim}2.5$ times to the ones in the simulated rainfall study. The erosion rates of pesticides from soybean-plots were $21{\sim}75%$ lower than the ones from bare soil plots. The peak runoff concentration in soybean-plots and bare soil plots were $1{\sim}9{\mu}gL^{-1}$ and $3{\sim}16{\mu}gL^{-1}$ for diazinon, $7{\sim}31{\mu}gL^{-1}$ and $5{\sim}40{\mu}gL^{-1}$ for metolachlor, respectively.

The Estimation of Groundwater Recharge with Spatial-Temporal Variability at the Musimcheon Catchment (시공간적 변동성을 고려한 무심천 유역의 지하수 함양량 추정)

  • Kim Nam-Won;Chung Il-Moon;Won Yoo-Seung;Lee Jeong-Woo;Lee Byung-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.9-19
    • /
    • 2006
  • The accurate estimation of groundwater recharge is important for the proper management of groundwater systems. The widely used techniques of groundwater recharge estimation include water table fluctuation method, baseflow separation method, and annual water balance method. However, these methods can not represent the temporal-spatial variability of recharge resulting from climatic condition, land use, soil storage and hydrogeological heterogeneity because the methods are all based on the lumped concept and local scale problems. Therefore, the objective of this paper is to present an effective method for estimating groundwater recharge with spatial-temporal variability using the SWAT model which can represent the heterogeneity of the watershed. The SWAT model can simulate daily surface runoff, evapotranspiration, soil storage, recharge, and groundwater flow within the watershed. The model was applied to the Musimcheon watershed located in the upstream of Mihocheon watershed. Hydrological components were determined during the period from 2001 to 2004, and the validity of the results was tested by comparing the estimated runoff with the observed runoff at the outlet of the catchment. The results of temporal and spatial variations of groundwater recharge were presented here. This study suggests that variations in recharge can be significantly affected by subbasin slope as well as land use.

Intra- and Extra-cellular Mechanisms of Saccharomyces cerevisiae Inactivation by High Voltage Pulsed Electric Fields Treatment (고전압 펄스 전기장에 의한 Saccharomyces cerevisiae의 세포내·외적 사멸 기작 연구)

  • Lee, Sang-Jae;Shin, Jung-Kue
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.87-94
    • /
    • 2015
  • High voltage pulsed electric fields (PEF) treatment is one of the more promising nonthermal technologies to fully or partially replace thermal processing. The objective of this research was to investigate the microbial inactivation mechanisms of PEF treatment in terms of intra- and extracellular changes in the cells. Saccharomyces cerevisae cells treated with PEF showed cellular membrane damage. This resulted in the leakage of UV-absorbing materials and intracelluar ions, which increased with increasing treatment time and electric fields strength. This indicates that PEF treatment causes cell death via membrane damage and physical rupture of cell walls. We further confirmed this by Phloxine B staining, a dye that accumulates in dead cells. Using scanning and transmission electron microscopy, we observed morphological changes as well as disrupted cytoplasmic membranes in PEF treated S. cerevisae cells. In addition, PEF treatment led to damaged chromosomal DNA in S. cerevisiae.

A Study on Production of Air Pollutants and Combustion Efficiency of Anthracite-Bituminous Coal Blend Combustor Using Fluidized Bed (유동층을 이용한 유,무연탄 혼합 연소로에서 대기오염물질 생성과 연소효율 연구)

  • Cho, Sang-Won;Min, Byoung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.517-523
    • /
    • 1997
  • We have been studied that combustion efficiency and the production of air pollution of anthracite-bituminous coal blend in a fluidized bed coal combustor. Also, the reaching time of steady state condition have been studied. This experimental results are presented as follows. As the height of fluidized bed combustor becomes higher, the concentrations of $SO_2$ and NOx mainly increased. Also, as anthracite fraction increased, the emission of $SO_2$ concentration was increased but, the variation of $NO_X$ concentration was negligible according to anthracite fraction. When anthracite fraction ratio was increased, elutriation rate was increased and exit combustible content over feeding combustible content was increased. Regardless of anthracite fraction ratio the uncombustible weight percentage according to average diameter of elutriation particles were approximately high in the case of fine particles. Over bed temperature $850^{\circ}C$ and excess air 20%, the difference of combution at the velocity 0.3m/s, bed temperature $850^{\circ}C$, the excess air 20%.

  • PDF