• Title/Summary/Keyword: 유체역학적 상호작용

Search Result 72, Processing Time 0.026 seconds

Prediction of Effective Wake Considering Propeller-Shear-Flow Interaction (선미후류-프로펠러 상호작용을 고려한 유효반류 추정법)

  • Chang-Sup,Lee;Jin-Tae,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.1-12
    • /
    • 1990
  • Interactions between a propeller and vortex system contained in a ship stern flow is treated theoretically. A new formulation to determine the effective velocity distributions is developed, which may be immediately applicable to the design and analysis of compound propulsors under the influence of severe vortical cross-flows around ship stern. An axisymmetric shear flow is represented by a system of ring vortices and the axial variation of the stream lines due to the action of propeller is represented by a cubic function. The strengths of ring vortices, which are varying along the stream lines, are determined by the conservation of angular momentum. Two simplified effective velocity models are proposed to confirm the theory. Sample calculations using the simplified models are made to compare with the results by other investigators.

  • PDF

Evaluation of Rectangular Section Flutter Derivatives by CFD (CFD에 의한 사각단면의 플러터계수 산출)

  • Min, Won;Lee, Yong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.693-700
    • /
    • 2003
  • An evaluation method for flutter derivatives is proposed, using indicial functions of structural members produced by Computational Fluid Dynamics (CFD). Flutter derivatives are obtained by Fourier integration of indicial functions. Instead of direct simulation of oscillating objects, only the calculation of time-dependent lift and moment variations of fixed objects with constant attack angle are necessary.The Finite Element Method (FEM) is developed as a tool for the numerical method. For two rectangular sections having different aspect ratios, the numerical analysis and wind tunnel test are carried out to inspect the adequacy of this study. The results proved to be good, and they could be used for a preliminary design.

SAFT Equation of State for Vapor-liquid Phase Equilibria of Associating Fluid Mixtures (SAFT 상태 방정식과 회합성 유체 혼합물의 기액 상평형)

  • Chang, Jaeeon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.607-624
    • /
    • 2018
  • We review SAFT equation of state (EOS) which is based on TPT theory and statistical-mechanical principles, and confirm that it can be used as a useful tool to predict vapor-liquid phase equilibria of associating fluid mixtures. We examine theoretical structure of PC-SAFT EOS in great detail, and then assess the applicability and performance of the EOS while applying it to various mixtures containing nonpolar components, polar components and associating components in a stage-wise manner. In contrast to the conventional engineering EOS, PC-SAFT EOS can accurately predict nonideal behaviors of those mixtures without using semi-empirical binary interaction parameter. This is because the SAFT theory is based on a rigorous theoretical framework at molecular level which effectively accounts for various intermolecular interactions, and it thus provides substantial benefits in applying the SAFT EOS to complex thermodynamic phenomena of multi-component mixtures.

A Study on Hydro-mechanical Behaviors of Rock Joints using Rotary Shear Testing Apparatus (회전식 전단시험기를 이용한 암석절리의 수리-역학적 거동에 관한 연구)

  • 천대성;이희석;이정인
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.328-336
    • /
    • 1999
  • To characterize the hydro-mechanical behavior of a rock joint, a rotary shear testing apparatus was devised in this study. Shear stress was driven by twisting the end of a sample in the rotary shear testing apparatus. The test results show that the rotary shear test underestimates the peak shear strength of a rock joint. The torque is known as a function of the radial distance from the axis of rotation, resulting in the radial variation of the shear stress. Fluid flow through rock joints is mainly dependent on the Joint roughness, contact area, initial aperture. To examine the dependency, the relationship between the hydraulic and the mechanical apertures for shear-flow was established by measuring the initial aperture. It shows that the mechanical aperture and the hydraulic aperture increase linearly with the dilatancy. The difference between the hydraulic and mechanical apertures describes the deviation from the behavior predicted by the parallel plate model.

  • PDF

A Study on the Approximation Method of the Hydrodynamic Forces on the VLFS (초대형 부유식 해양구조물에 작용하는 유체력 추정에 관한 근사계산법의 연구)

  • 박노식
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.74-83
    • /
    • 1997
  • This study is to develop a practical calculation method of hydrodynamic force and motion response on very large floating structures of multiple legs. To investigate the effecr of hydrodynamic interfaction and of free surface on the reaponses of very large floating structures in regular waves, four kind of models are considered, ie. 1, 4, 64, 21248 column with footing. Based upon the results of this study, it is found that the middle parts of very large floating structures have small diffration effects. Therefore only out side parts are used to determine the hydrodynamic forcea for taking into account the effects of interaction.

  • PDF

A Study for Hydrodynamic Forces Action on Structural Parts of Semi-submersible Units. (반체수식 해양구조물의 요소부제에 작용하는 유체력)

  • 박노식
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.124-130
    • /
    • 1994
  • This paper compared with the hydrodynamic interference acting on the semi-submersible element model with 1-lowerhull and 2-columns. In this case, calculation are applying the strip method and 3-dimensional source distribution method. As the wave frequency and the distance between increase, the influence effects of parts upon each other decrease and approach the results calculated by using the strip method. Thus, it can be prepared for the investigation of new practical method of investigation of new practical method of hydrodynamic forces acting on huge structures.

  • PDF

Numerical Study on Couette Flow in Nanostructured Channel using Molecular-continuum Hybrid Method (분자-연속체 하이브리드 기법을 이용한 구조물이 있는 나노 채널에서의 쿠에트 유동에 대한 수치적 연구)

  • Kim, Youngjin;Jeong, Myunggeun;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.429-434
    • /
    • 2017
  • A molecular-continuum hybrid method was developed to simulate microscale and nanoscale fluids where continuum fluidics cannot be used to predict Couette flow. Molecular dynamics simulation is used near the solid surface where the flow cannot be predicted by continuum fluidics, and Navier-Stokes equations are used in the other regions. Numerical simulation of Couette flow was performed using the hybrid method to investigate the effect of solid-liquid interaction and surface roughness in a nanochannel. It was found that the solid-liquid interaction and surface roughness influence the boundary condition. When the surface energy is low, slippage occurs near the solid surface, and the magnitude of slippage decreases with increase in surface energy. When the surface energy is high, a locking boundary condition is formed. The roughness disturbs slippage near the solid surface and promotes the locking boundary condition.

A Numerical Analysis on Effect of Baffles in a Stirred Vessel (교반탱크에서 베플 형상의 영향에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The flow characteristics in a stirred tank are very useful in a wide variety of industrial applications. Generally, the flow pattern, power consumption and mixing time in stirred vessels depend not only on the design of the impeller, but also on the tanks' geometry and internal structure. In this study, the analysis of an unstable and unsteady complicated flow characteristics generated by the interaction between the baffle shape and impeller were performed using the ANSYS FLUENT LES Turbulence Model. The study compared the predictions of CFD with the interaction between two types of rotating impellers (axial and radial flows) and the shapes of three baffles. The results of the comparison verified that the design model showed a relatively efficient trend in the mixing flow fields and characteristics around the impeller and baffles during agitation.

A Study of the Thrust Vectoring Control Using Secondary Co- and Counter-Streams (2차 순유동과 역유동을 이용한 추력벡터 제어법에 관한 연구)

  • Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.109-112
    • /
    • 2004
  • Of late, the thrust vectoring control, using fluidic co-flow and counter-flow concepts, has been received much attention since it not only improves the maneuverability of propulsive engine but also reduces an additional material load due to the trailing control wings, which in turn reduce the aerodynamic drag. However, the control effects are not understood well since the flow field involves very complicated non: physics such as shock wave/boundary layer interaction, separation and significant unsteadiness. Existing data are not enough to achieve the effectiveness and usefulness of the thrust vectoring control, and systematic work is required for the purpose of practical applications In the present study, computational study has been performed to investigate the effects of the thrust vector control using the fluidic co-and counter-flow concepts. The results obtained show that, for a given pressure ratio, the thrust deflection angle has a maximum value at a certain suction flow rate, which is at less than $5\%$ of the mass flow rate of the primary jet. With a longer collar, the same vector angle is achievable with smaller mass flow rate.

  • PDF

Wave Exciting Forces on Multiple Floating Bodies of Semisubmersible Type in Multi-directional Irregular Waves (다방향 불규칙파중에서의 반잠수식 부체군에 작용하는 파강제력)

  • 조효제;구자삼;김경태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.76-89
    • /
    • 1997
  • The hydrodynamic interaction characteristics between multiple floating bodies of semisubmersible type are examined to present the basic data for the design of huge offshore structures supported by a large number of the floating bodies in multi-directional irregular waves. The numerical approach is based on a combination of a three-dimensional source distribution method, the wave interaction theory and the spectral analysis method. The effects of wave directionality on the wave exciting forces acting on multiple floating bodies in multi-directional irregular waves also have been pointed out.

  • PDF