• Title/Summary/Keyword: 유체동역학

Search Result 238, Processing Time 0.023 seconds

A Study on the Wind Pressure Coefficients of Flat-type Apartment Complexes Considering Building Layout and Aspect Ratio (판상형 공동주택의 동 배치 및 종횡비에 따른 풍압계수 특성에 관한 연구)

  • Yoon, Seong-Hoon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.153-159
    • /
    • 2021
  • In this study, basic data that can be referenced for ventilation modeling was presented by analyzing the characteristics of wind pressure coefficients(Cp) according to wind direction angles under conditions of different building layouts and aspect ratios through CFD (Computational Fluid Dynamics) analysis for flat-type apartment complexes. In the case of a wind direction angle of 0°, Cp distribution in the form of an inverted S-shape was shown on the front of the building located on the windward side. And Cp corresponding to the lowest floor, the uppermost floor, and the two inflection points showed relatively close values regardless of the height of the building. The inflection point of the low-rise part was formed at a height of about 11m, and the height of the high-rise part could be calculated through a trend formula proportional to the height of the building. It was confirmed that the averaged Cp value can be applied in most conditions except for the wind direction angle of 45 degrees.

Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater (상부 코일히터를 갖춘 나선재킷형 태양열 축열조의 성능예측을 위한 CFD 해석모델 개발 및 검증)

  • Baek, Seung Man;Zhong, Yiming;Nam, Jin Hyun;Chung, Jae Dong;Hong, Hiki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.331-341
    • /
    • 2013
  • In a solar domestic hot water (SDHW) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (TST) as hot water. In this study, a computational fluid dynamics (CFD) model was developed to predict the solar thermal energy storage in a hybrid-type TST equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a TST, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the TST. The developed model was validated by the good agreement between the CFD results and the experimental results performed with the hybrid-type TST in SDHW settings.

Convolution Neural Network for Prediction of DNA Length and Number of Species (DNA 길이와 혼합 종 개수 예측을 위한 합성곱 신경망)

  • Sunghee Yang;Yeone Kim;Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.274-280
    • /
    • 2024
  • Machine learning techniques utilizing neural networks have been employed in various fields such as disease gene discovery and diagnosis, drug development, and prediction of drug-induced liver injury. Disease features can be investigated by molecular information of DNA. In this study, we developed a neural network to predict the length of DNA and the number of DNA species in mixture solution which are representative molecular information of DNA. In order to address the time-consuming limitations of gel electrophoresis as conventional analysis, we analyzed the dynamic data of a microfluidic concentrating device. The dynamic data were reconstructed into a spatiotemporal map, which reduced the computational cost required for training and prediction. We employed a convolutional neural network to enhance the accuracy to analyze the spatiotemporal map. As a result, we successfully performed single DNA length prediction as single-variable regression, simultaneous prediction of multiple DNA lengths as multivariable regression, and prediction of the number of DNA species in mixture as binary classification. Additionally, based on the composition of training data, we proposed a solution to resolve the problem of prediction bias. By utilizing this study, it would be effectively performed that medical diagnosis using optical measurement such as liquid biopsy of cell-free DNA, cancer diagnosis, etc.

A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate (유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구)

  • Cho, Hyun-Sung;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.378-383
    • /
    • 2013
  • A butterfly throttle valve has been used to control the brake power of an SI engine by controlling the mass flow-rate of intake air in the induction system. However, the valve has a serious effect on the volumetric efficiency of the engine due to the pressure resistance in the induction system. In this study, a new intake air controlling valve named "Variable Geometry Throttle Valve(VGTV)" is proposed to minimize the pressure resistance in the intake system of an SI engine. The design concept of VGTV is on the application of a venturi nozzle in the air flow path. Instead of change of the butterfly valve angle in the airflow field, the throat width of the VGTV valve is varied with the operating condition of an SI engine. In this numerical study, CFD(computational fluid dynamics) simulation technique was incorporated to have an aerodynamics performance analysis of the two air flow controlling systems; butterfly valve and VGTV and compared the results to know which system has lower pressure resistance in the air intake system. From the result, it was found that VGTV has lower pressure resistance than the butterfly valve. Especially VGTV is effective on the low and medium load operating condition of an SI engine. The averaged pressure resistance of VGTV is about 49.0% lower than the value of the conventional butterfly throttle valve.

Development of a Simulation Prediction System Using Statistical Machine Learning Techniques (통계적 기계학습 기술을 이용한 시뮬레이션 결과 예측 시스템 개발)

  • Lee, Ki Yong;Shin, YoonJae;Choe, YeonJeong;Kim, SeonJeong;Suh, Young-Kyoon;Sa, Jeong Hwan;Lee, JongSuk Luth;Cho, Kum Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.593-606
    • /
    • 2016
  • Computer simulation is widely used in a variety of computational science and engineering fields, including computational fluid dynamics, nano physics, computational chemistry, structural dynamics, and computer-aided optimal design, to simulate the behavior of a system. As the demand for the accuracy and complexity of the simulation grows, however, the cost of executing the simulation is rapidly increasing. It, therefore, is very important to lower the total execution time of the simulation especially when that simulation makes a huge number of repetitions with varying values of input parameters. In this paper we develop a simulation service system that provides the ability to predict the result of the requested simulation without actual execution for that simulation: by recording and then returning previously obtained or predicted results of that simulation. To achieve the goal of avoiding repetitive simulation, the system provides two main functionalities: (1) storing simulation-result records into database and (2) predicting from the database the result of a requested simulation using statistical machine learning techniques. In our experiments we evaluate the prediction performance of the system using real airfoil simulation result data. Our system on average showed a very low error rate at a minimum of 0.9% for a certain output variable. Using the system any user can receive the predicted outcome of her simulation promptly without actually running it, which would otherwise impose a heavy burden on computing and storage resources.

EDISON Platform to Supporting Education and Integration Research in Computational Science (계산과학 분야의 교육 및 융합연구 지원을 위한 EDISON 플랫폼)

  • Jin, Du-Seok;Jung, Young-Jin;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.176-182
    • /
    • 2012
  • Recently, a new theoretical and methodological approach for computational science is becoming more and more popular for analyzing and solving scientific problems in various scientific disciplines and applied research. Computational science is a field of study concerned with constructing mathematical models and quantitative analysis techniques and using large computing resources to solve the problems which are difficult to approach in a physical experimentally. In this paper, we present R&D of EDISON open integration platform that allows anyone like professors, researchers, industrial workers, students etc to upload their advanced research result such as simulation SW to use and share based on the cyber infrastructure of supercomputer and network. EDISON platform, which consists of 3 tiers (EDISON application framework, EDISON middleware, and EDISON infra resources) provides Web portal for education and research in 5 areas (CFD, Chemistry, Physics, Structural Dynamics, Computational Design) and user service.

Dynamic Stability Analysis of Floating Transport Wind-Turbine Foundation Considering Internal Fluid Sloshing Effect (내부 유체 슬로싱 효과를 고려한 부유이송 해상풍력 기초의 동적 안정성 해석)

  • Hong, Seokjin;Kim, Donghyun;Kang, Sinwook;Kang, Keumseok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.461-467
    • /
    • 2016
  • In order to install the floating transport type wind-turbine foundation, water pumping is used to sink the foundation. During this process, its mass and center of gravity, and buoyancy center become continuously changed so that the dynamic stability of the floating foundation become unstable. Dynamic stability analysis of the floating foundation is a complex problem since it should take into account not only the environmental wave, wind, and current loads but also its weight change effect simultaneously considering six-degree-of-freedom motion. In this study, advanced numerical method based on the coupled computational fluid dynamics (CFD) and multi-body dynamics (MBD) approach has been applied to the dynamic stability analysis of the floating foundation. The sloshing effect of foundation internal water is also considered and the floating dynamic characteristics are numerically investigated in detail.

Experimental Validation of Ornithopter Aerodynamic Model in Low Reynolds Number Regime (저 레이놀즈 수 영역에서 날갯짓 비행체 공력 모델의 실험적 검증)

  • Lee, Jun-Seong;Kim, Dae-Kwan;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.647-654
    • /
    • 2010
  • In this study, an efficient ornithopter aerodynamic model, which is applicable to ornithopter wing design considering fluid-structure interaction or ornithopter flight dynamics and control simulation, was proposed and experimentally validated through the wind tunnel experiments. Due to the ornithopter aerodynamics governed by unsteady low Reynolds number flow, an experimental device was specially designed and developed. A part of the experimental device, 2-axis loadcell, was situated in the non-inertial frame; the dynamic calibration method was established to compensate the inertial load for pure aerodynamic load measurements. The characteristics of proposed aerodynamic model were compared with the experimental data in terms of mean and root-mean-square values of lift and drag coefficients with respect to the flow speed, flapping frequency, and fixed angle of attack.

A Comparative Study of Turbulence Models for Dissolved Air Flotation Flow Analysis (용존공기부상법 유동해석을 위한 난류모델 비교연구)

  • Park, Min A;Lee, Kyun Ho;Chung, Jae Dong;Seo, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.617-624
    • /
    • 2015
  • The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard ${\kappa}-{\varepsilon}$ model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models.

Numerical Study on Variations in the Sealing Performance of Air Curtains in Large-Scale Factory Opening Considering Various Design Factors (대형 공장 개구부용 에어커튼의 설계 인자에 따른 차단 성능 변화에 대한 전산해석 연구)

  • Moon, Jongmin;Rhee, Gwang Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.703-711
    • /
    • 2015
  • In large-scale factories, there are usually openings in the building to increase the efficiency of workers. However, if the factory is heated during winter, openings significantly increase the heating load. Therefore, there is a need for air curtains to be installed at the top of openings in factories to reduce the heating load due to the cold air entering from outside. The main design variables of these air curtains are the discharge angle, speed, and temperature, etc. While there have already been many studies focusing on these design variables, the distance from the opening and the width of the discharge have not been studied even though they also affect the sealing performance. As a result, when the distance from the opening decreases and the width of the discharge increases, we realize an optimum air curtain performance. However, if the distance from the opening is about 1.5 m, by adjusting the discharge angle and the distance from the opening, the sealing performance of the air curtain is improved by 13.7%.