• Title/Summary/Keyword: 유전체 장벽 방전 플라즈마

Search Result 47, Processing Time 0.036 seconds

Sterilization of Food-Borne Pathogenic Bacteria by Atmospheric Pressure Dielectric Barrier Discharge Plasma (대기압 유전체장벽방전 플라즈마에 의한 식품유해 미생물 살균)

  • Lee, Seung Je;Song, Yoon Seok;Park, Yu Ri;Ryu, Seung Min;Jeon, Hyeong Won;Eom, Sang Heum
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.222-227
    • /
    • 2017
  • This study aimed to explore the potential for food-industry application of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganism. The effects of the key parameters such as power, oxygen ratio, exposure time and distance on Escherichia coli KCCM 21052 sterilization by the atmospheric pressure DBD plasma treatment were investigated. The experimental results revealed that increasing the power, exposure time or oxygen ratio and decreasing the exposure distance led to an improvement in the sterilization efficiency of E. coli. Furthermore, the atmospheric pressure DBD plasma (1.0 kW power, 1.0% (v/v) $O_2$, 5 min exposure time and 20 mm exposure distance) treatment was very effective for the sterilization of food-borne pathogenic bacteria. The sterilization rate of E. coli, Bacillus cereus KCCM 40935, Bacillus subtilis KCCM 12027, Bacillus thuringiensis KCCM 11429 and Bacillus atrophaeus KCCM 11314 were 72.3%, 74.6%, 88.5%, 84.7% and 91.3%, respectively.

Development of the Dielectric Barrier Discharge Plasma Generator for the Eco-friendly Cleaning Process of the Electronic Components (전자부품의 친환경 세정공정 적용을 위한 유전체장벽 방전 플라즈마 생성 장치 개발)

  • Son, Young-Su;Ham, Sang-Yong;Kim, Byung-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1217-1223
    • /
    • 2011
  • In this paper, the dielectric barrier discharge plasma generator has been studied for producing of the high concentration ozone gas. Proposed plasma generator has the structure of extremely narrow discharge air gap(0.15mm) in order to realize the high electric field discharge. We investigate the performance of the dielectric barrier discharge plasma generator experimentally and the results show that the generator has very high ozone concentration characteristics of 13.7[wt%/$O_2$] at the oxygen flow rate of 1[${\ell}$/min] of each discharge cell. So, we confirmed that the proposed plasma generator is suitable for the high concentration ozone production facility of the eco-friendly ozone functional water cleaning system in the electronic components cleaning process.

Oxidation of Elemental Mercury using Dielectric Barrier Discharge Process (유전체 장벽 방전을 이용한 원소수은의 산화특성)

  • Byun, Youngchul;Ko, Kyung Bo;Cho, Moo Hyun;NamKung, Won;Shin, Dong Nam;Koh, Dong Jun;Kim, Kyoung Tae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.183-189
    • /
    • 2007
  • We have investigated the oxidation of gas phase elemental mercury using dielectric barrier discharge (DBD). In the DBD process, active species such as $O_3$, OH, O and $HO_2$ are generated by collisions between electrons and gas molecules. Search active species convert elemental mercury into mercury oxide which is deposited into the wall of DBD reactor because of its low vapor pressure. The oxidation efficiency of elemental mercury has been decreased from 60 to 30% by increasing the initial concentration of the elemental mercury from 72 to $655{\mu}g/Nm^3$. The gas retention time at the DBD reactor has showed the little effect on the oxidation efficiency. The more oxygen concentration has induced the more oxidation of elemental mercury, whereas there has been no appreciable oxidation within pure $N_2$ discharge. It has indicated that oxygen atom and ozone, generated in air condition determine the oxidation of elemental mercury.

Low Voltage Atmospheric Plasma Generation using DBD Initiation Carrier Injection (유전체 장벽 방전(DBD) 씨드 캐리어를 이용한 저 전압 대기압 플라즈마 발생)

  • Hwang, Sol;Park, Hyunho;Kim, Youngmin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.82-86
    • /
    • 2018
  • Low voltage atmospheric plasma generation using DBD Initiation carrier injection is reported. DBD afterglow was used as initiation carriers prior to a primary discharge and a significant reduction in the breakdown voltage of atmospheric discharge was observed when sufficient initiation carriers were provided. Quantative correlation study between the breakdown voltage and the initiation carriers suggests that the atmospheric breakdown voltage reduces to only half of the breakdown voltage for Townsend regime. Also, use of DBD initiation carrier injection likely offers better device reliability by protecting electrodes with a dielectric layer and thus suppressing electrode wear.

A Study on the Microorganism Disinfection and Characteristics of Discharged Water of Dielectric Barrier Discharge Plasma Systems (유전체 장벽 방전 플라즈마 방전수의 특성과 미생물 소독에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.159-165
    • /
    • 2012
  • Objectives: This experiment was carried out to elucidate the effect of discharged water on the disinfection of $Phytophthora$ $capsici$ and evaluate the water characteristics. Methods: The dielectric barrier discharges (DBD) plasma reactor system used in this study consisted of a plasma component [discharge, ground electrode and quartz dielectric tube], high voltage source, and air supply. The effects of water characteristics such as pH, ORP and conductivity and the disinfection effect of discharged water were investigated. Results: Experimental results showed that in the process of discharge, the pH decreased, whereas ORP and electric conductivity increased. When the discharge time was 30 min, $Phytophthora$ $capsici$ of 2.94 log was disinfected within 300 seconds. Disinfection performance of stored discharged water was maintained for three days; however the disinfection effect vanished after five days. When $Phytophthora$ $capsici$ was injected into the discharged water, the disinfection effect decreased after two days. Conclusions: It is considered that the main disinfection parameters of the discharged water were chemically active species such as $H_2O_2$ and $O_3$ and high ORP.

A study on non-thermal plasma reactor for generation of negative ions (음이온 발생을 위한 저온 플라즈마 반응기 개발에 관한 연구)

  • Yu, Guang-Xun;Chae, Jae-Ou;Kim, Woo-Hyung;Wei, Wei;Wang, Hui
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2344-2347
    • /
    • 2007
  • To generate negative ion, a small dielectric barrier discharge (DBD) plasma reactor was used in this study and operated by high AC voltage. With increasing of voltage, we can get more negative ions. However unfortunately, if the input voltage is too high, it will also cause formation of ozone which is very harmful to human being health. So the work of finding out the best condition of Voltage and frequency was carried out firstly. After several times of measurement, operating at 20 kHz frequency is the best condition generating high ion concentration without ozone. For the purpose of finding out the best reactor structure, two types of surface dielectric barrier discharge (DBD) reactors were examined to produce negative oxygen ions at the conditions of 20 kHz frequency. The results indicated that the surface DBD reactor with several small tips showed better characteristics for generation of negative oxygen ions at the same condition.

  • PDF

Experimental Study on Effect of Electrode Material and Thickness in a Dielectric Barrier Discharge Plasma Actuator Performance (전극 재료 및 두께가 DBD 플라즈마 액추에이터의 성능에 미치는 영향에 대한 실험적 연구)

  • Lee, Seung-Yeob;Shin, You-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.46-50
    • /
    • 2012
  • Plasma actuator makes parallel flow on the wall surface by the interaction between plasma and neutral air particles. Dielectric barrier discharge (DBD) plasma actuator is widely studied as one type of plasma actuators, which consists of one electrode exposed to the environmental gas and the other encapsulated by a dielectric material. This paper is experimentally focused on the performance of DBD plasma actuator mounted on a flat plate, which depends on kinds of the electrode materials, their thicknesses and the supplied voltage including its frequency. We measured the velocity magnitudes of the induced flow by a stagnation probe as a performance parameter of the plasma actuators. The velocity profiles of the flow induced by the plasma actuators are similar in all measurement cases. The magnitude of the induced velocity is strongly influenced by the thickness of the electrodes and the frequency of the input voltage. The performance of DBD plasma actuators is related to the electric properties of the electrode materials such as the ionization energy and the electrical resistivity.

Effect of Intermittent Plasma Discharge on the Hydrocarbon Selective Catalytic Reduction of Nitrogen Oxides (간헐적 플라즈마 방전이 질소산화물의 탄화수소 선택적 촉매환원에 미치는 영향)

  • Kyeong-Hwan Yoon;Y. S. Mok
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.507-514
    • /
    • 2023
  • The selective catalytic reduction (SCR) of nitrogen oxides (NOx) was investigated in a catalyst (Ag/γ-Al2O3) packed dielectric barrier discharge plasma reactor. The intermittent generation of plasma in the catalyst bed partially oxidized the hydrocarbon reductant for NOx removal to several aldehydes. Compared to using the catalyst alone, higher NOx conversion was observed with the intermittent generation of plasma due to the formation of highly reductive aldehydes. Under the same operating conditions (temperature: 250 ℃; C/N: 8), the NOx reduction efficiencies were 47.5%, 92%, and 96% for n-heptane, propionaldehyde, and butyraldehyde, respectively, demonstrating the high NOx reduction capability of aldehydes. To determine the optimal condition for intermittent plasma generation, the high voltage on/off cycle was adjusted from 0.5 to 3 min. The NOx reduction performance was compared between continuous and intermittent plasma generation on the same energy density basis. The highest NOx reduction efficiency was achieved at 2-min high voltage on/off intervals. The reason that the intermittent plasma discharge exhibited higher NOx reduction efficiency even at the same energy density, compared to the continuous plasma generation case, is that the intermediate products, such as aldehydes generated from hydrocarbon, were more efficiently utilized for the reduction of nitrogen oxides.

Operational Properties and Microbial Inactivation Performance of Dielectric Barrier Discharge Plasma Treatment System (유전체장벽방전 플라즈마 장치의 조작특성과 살균력)

  • Mok, Chulkyoon;Lee, Taehoon
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2011
  • A dielectric barrier discharge plasma (DBDP) treatment system was fabricated and the optimum operating conditions for the plasma generation were determined in order to explore the potential of cold plasma as a non-thermal proessing technology. The microbial inactivation performance of the system was also evaluated against Staphyloocus aureus. The system consisted of power supply, transformer, electrode assembly and sample treatment plate. The input power was 220 V single phase AC and amplified to 10.0-50.0 kV on a transformer. A pulsed sine wave of frequency 10.0-50.0 kHz was introduced to the electrode embedded in ceramic as a dielectric barrier material in order to generate plasma at atmospheric pressure. Higher currents and consequently greater power were required for the plasma generation as the frequencies increased. A homogeneous and stable plasma was generated at currents of 1.0-2.0, and frequencies of 32.0-35.3 kHz. The optimum electrode-gaps for the plasma generation were 1.85 mm without loaded samples. More power was consumed as the electrode-gaps increased. The practically optimum electrode- gap was, however, 2.65 mm when samples were treated on slide-glasses for microbial inactivation. The maximum temperature increase after 10 min treatment was less than 20$^{\circ}C$, indicating no microbial inactivation effect by heat and thereby insuring a non-thermal method. The DBDP inactivation effect against Staphyloocus aureus increased linearly with treatment time up to 5 min, but plateaued afterward. More than 5 log reduction was achieved by 10 min treatment at 1.25 A.

Characteristics of Discharges and Plasma Generation in Micro-Air gaps and Micro-Dielectric Barriers (마이크로 유전체장벽 및 마이크로 공격의 방전 및 플라즈마 발생특성)

  • Shon, Si-Ho;Tae, Heung-Sik;Hoon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1835-1837
    • /
    • 1996
  • Characteristics of Discharge and nonthermal plasma generation in a micro-air gap spacing between a micro-dielectric barrier and a electrode have been investigated experimentally to chert the potential to be used as a micro-scale nonthermal plasma generator. It is found that the output ozone concentration, as a nonthermal plasma intensity parameter, of the micro-air gnp nonthermal plasma generator depended greatly upon the air gap spacing and thickness of the dielectric barrier. As a result, there is a optimal air gap sparing in the same micro dielectric barrier to generate ozone effectively. And the higher ozone concentration was generated from the thinner micro-barrier.

  • PDF