Operational Properties and Microbial Inactivation Performance of Dielectric Barrier Discharge Plasma Treatment System

유전체장벽방전 플라즈마 장치의 조작특성과 살균력

  • Mok, Chulkyoon (Department of Food Science and Biotechnology, College of Engineering, Kyungwon University) ;
  • Lee, Taehoon (Department of Food Science and Biotechnology, College of Engineering, Kyungwon University)
  • 목철균 (경원대학교 식품생물공학과) ;
  • 이태훈 (경원대학교 식품생물공학과)
  • Received : 2011.10.06
  • Accepted : 2011.11.15
  • Published : 2011.11.30

Abstract

A dielectric barrier discharge plasma (DBDP) treatment system was fabricated and the optimum operating conditions for the plasma generation were determined in order to explore the potential of cold plasma as a non-thermal proessing technology. The microbial inactivation performance of the system was also evaluated against Staphyloocus aureus. The system consisted of power supply, transformer, electrode assembly and sample treatment plate. The input power was 220 V single phase AC and amplified to 10.0-50.0 kV on a transformer. A pulsed sine wave of frequency 10.0-50.0 kHz was introduced to the electrode embedded in ceramic as a dielectric barrier material in order to generate plasma at atmospheric pressure. Higher currents and consequently greater power were required for the plasma generation as the frequencies increased. A homogeneous and stable plasma was generated at currents of 1.0-2.0, and frequencies of 32.0-35.3 kHz. The optimum electrode-gaps for the plasma generation were 1.85 mm without loaded samples. More power was consumed as the electrode-gaps increased. The practically optimum electrode- gap was, however, 2.65 mm when samples were treated on slide-glasses for microbial inactivation. The maximum temperature increase after 10 min treatment was less than 20$^{\circ}C$, indicating no microbial inactivation effect by heat and thereby insuring a non-thermal method. The DBDP inactivation effect against Staphyloocus aureus increased linearly with treatment time up to 5 min, but plateaued afterward. More than 5 log reduction was achieved by 10 min treatment at 1.25 A.

비열살균기술로서 저온플라즈마 활용 가능성을 탐색하고자 유전체장벽 방전 플라즈마(DBDP)생성장치를 제작하여 최적 플라즈마생성 조건을 도출하고 Staphyloocus aureus를 대상으로 살균성능을 조사하였다. DBDP생성장치는 전력공급장치, 변압기, 전극, 시료처리부 등 네 부분으로 구성하였다. 인가전압은 단상 200 V AC를 사용하고, 변압기를 통하여 10.0-50.0 kV로 변환하고 10.0-50.0 kHz의 주파수의 펄스 구형파를 유전체인 세라믹 블록 내에 장치한 전극에 투입함으로써 상압에서 플라즈마를 생성하였다. 주파수를 올림에 따라 높은 전류가 유입되었고, 이에 비례하여 전력소비량이 증가하였다. 전류세기 1.0-2.0 A, 주파수32.0-35.3 kHz 범위에서 균일하고 안정적인 플라즈마 발생이 이루어졌으며 시료를 투입하지 않은 상태에서의 최적 전극간격은 1.85 mm 이었다. 전극간격을 높임에 따라 소비전력이 증가하였으나 시료 처리에 적합한 전극간격은 2.65 mm였다. DBDP 처리에 의한 온도상승은 최대 20$^{\circ}C$에 불과하여 열에 의한 생물학적 효과는 무시할 수 있었으며 따라서 비열기술임이 확인되었다. Staphyloocus aureus를 대상으로 DBDP 처리할 경우 초기 5분 동안은 살균치가 직선적인 증가를 보이다가 이후 다소 완만해지는 경향을 보였으며 1.25 A에서 10분간 처리 시 살균치는 5.0을 상회하였다.

Keywords

Acknowledgement

Supported by : 농림수산식품부, 농촌진흥청

References

  1. Becker N, Schmidt M, Viggiano AA, Dresslar R, Williams S. 2005. Air plasma chemistry. In: Becker KM, Kogelschartz U, Schoenback KH, Barker RJ (eds.), Non-equilibrium Air Plasmas at Atmospheric Pressure. IOP Publishing Ltd., London, England, pp. 124-182.
  2. Deng S, Ruan R, Mok C, Huang G, Lin X, Chen P. 2007. Inactivation of Escherichia coli on almonds using nonthermal plasma. J. Food Sci. 72(2): M62-M65. https://doi.org/10.1111/j.1750-3841.2007.00275.x
  3. KFDA. 2005. Food Codes Vol. II. Korea Food and Drug Administration, Seoul, Korea, p. 97.
  4. Lerouge S, Wertheimer MR, Yahia L. 2001. Plasma sterilization: a review of parameters, mechanisms, and limitations. Plasmas Polym. 6: 175-188. https://doi.org/10.1023/A:1013196629791
  5. Moisan M, Berbeau J, Crevier MC, Pelletier J, Philip N, Saoudi B. 2002. Plasma sterilization: methods and mechanisms. Pure Appl. Chem. 74: 349-358. https://doi.org/10.1351/pac200274030349
  6. Mok C, Lee NH. 2009. Ultraviolet inactivation of Escherichia coli in stainless steel cups. Food Eng. Prog. 13: 122-129.
  7. Mok C, Song DM. 2010. Low-Pressure Plasma Inactivation of Escherichia coli. Food Eng. Prog. 14: 202-207.
  8. Montie TC, Kelly-Winternberg K, Roth JR. 2000. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci. 28: 41-50. https://doi.org/10.1109/27.842860
  9. Tanino M, Xilu W, Takashima K, Katsura S, Mizuno A. 2007. Sterilization using dielectric barrier discharge at atmospheric pressure. Int. J. Plasma Environ. Sci. Technol. 1: 102-107.