유전자 발현은 유전자가 mRNA와 생체의 기능을 일으키게 하는 단백질을 만들어내는 과정이다. 유전자 발현에 대한 정보는 유전자의 기능을 밝히고 유전자간의 상관 관계를 알아내는데 중요한 역할을 한다. 이러한 유전자 발현 연구를 위한 정보를 대량으로 신속하게 얻을 수 있는 도구가 DNA Chip이다. DNA Chip으로 얻은 수백-수천 개의 데이터는 그 데이터만으로는 의미를 갖지 못한다. 따라서 유전자 발현 정도에 따라 수치적으로 획득된 데이터에서 의미적인 특성을 찾아내기 위해서는 클러스터링 방법이 필요하다. 본 논문에서는 수많은 유전자 데이터 중에서 주요 정보를 포함한 것으로 판단되는 유전자 데이터를 선택하여 특징간을 계산하고 신경망 학습을 이용한 클러스터링하는 알고리즘에 대해서 기술한다.
다량의 유전자 발현 정보를 담고 있는 DNA 마이크로어레이 기술의 발달로 인해 대량의 생물정보를 한번의 실험을 통해 분석할 수 있게 되었다. 유전자 발현 데이터를 분석하는 방법 중 하나인 클러스터링은 비슷한 기능을 가진 유전자들을 그룹별로 묶어서 그룹 레의 유전자들의 기능을 밝히거나 미지의 유전자를 분석하는데 이용되고 있다 본 논문에서는 유전자 발현 데이터를 클러스터링 하여 그로부터 유전 정보를 찾아내기 위한 방법으로 GG (Gath-Geva) 알고리즘을 제시한다. 퍼지 클러스터링 알고리즘중 하나인 GG 알고리즘은 대표적인 퍼지 클러스터링 방법인 퍼지 c-means 와 GK (Gustafson-Kessel) 알고리즘을 개선한 것으로. 차원이 크고 분포가 애매하여 클러스터링이 어려운 유전자 발현 데이터의 클러스터링에 적합한 알고리즘이다. 혈청(Serum) 유전자 데이터와 효모(Yeast) 세포주기 데이터를 CG 알고리즘 이용해 클러스터링 해 보고, 그 결과를 퍼지 c-means 알고리즘, GK알고리즘과 비교해 본 결과, GG 알고리즘이 유전자 발현 데이터의 클러스터링에 더 적합함을 확인하였다.
Microarray 로 표현되는 유전자 발현 데이터는 일반적으로 샘플(sample) 수에 비해 많은 수의 유전자를 포함한다. 피처 추출은 이러한 데이터에 기계학습 방법론을 효과적으로 적용하기 위한 방법 중 하나로, 학습성능을 향상시키고 계산 시간을 줄일 수 있을 뿐만 아니라 중요한 피처들을 발견할 수 있다는 점에서 큰 의미를 갖는다. 본 연구에서는 베이지안 신경망(Bayesian Neural Network)에 기반 한 자동유효성탐지(Automatic Relevance Detection, ARD) 기법을 사용하여 유전자 발현 데이터에서 학습 오류를 줄이는 동시에 학습에 필요한 최소한의 유전자 집합을 추출할 수 있는 방법을 제시했다. CAMDA 2003에서 제시된 폐종양 환자의 유전자 발현 데이터에 대해 실험한 결과, 12600 개의 유전자 중에서 가장 중요하다고 여겨지는 187 개의 유전자를 발견했으며, 높은 학습성능을 달성했다.
마이크로어레이 데이터는 매우 많은 수의 유전자로 구성되며, 암 분류 성능을 높이기 위해서는 대상 암과 관련된 유용한 유전자를 선택해야 한다. 기존 필터 기반 유전자 선택 기법은 유전자를 개별적으로 평가하여 암 분류에 사용하기 때문에, 유전자 사이의 관계나 분류기와의 상관성을 고려하지 않으며, 비슷한 특성의 유전자를 중복해서 선택하는 경향이 있다. 본 논문에서는 필터와 래퍼 방식을 결합하여 분류결과를 반복적으로 반영하며 유전자를 선택하는 기법을 제안한다. 필터 기법으로 유전자의 순위를 계산할 때 이전 분류에서 틀린 샘플의 가중치가 높도록 설계하고, 분류를 반복하면서 각 단계에서 유용한 유전자를 추가로 선택한다. 제안하는 방법을 대표적 암 분류 데이터인 림포마 암과 대장암 데이터에 적용하여 유용성을 검증하였다.
본 논문에서는 유전자 발현데이터로부터 유전자 조절네트워크를 추론하는 유전자 알고리즘을 제안한다. 근래에 유전자 알고리즘을 이용하여 유전자 조절네트워크를 추론하려는 시도가 있었으나 그리 성공적이지 못하였다. 우리는 본 논문에서 유전자 조절네트워크를 보다 효율적으로 추론할 수 있게 하기 위하여 새로운 유전자 인코딩 기법을 개발하여 적용하였다. 선형 유전자 조절네트워크로 모델링 된 인공 유전자 조절네트워크를 사용하여 실험한 결과 대부분의 경우에 있어서 주어진 인공 유전자 조절네트워크와 유사한 네트워크를 추론하였으며 완전히 동일한 유전자네트워크를 추론하기도 하였다. 향후 실제 유전자 발현 데이터를 이용하여 추론해 보는 것이 필요하다.
유전체에 대한 관심이 크게 증가하면서, 이에 따른 다양한 연구가 이루어졌다. 그 결과 유전체와 관련된 다양한 종류의 데이터가 얻어졌으며, 그것을 해석하고 다른 데이터와 통합하는 것이 중요한 연구과제 중 하나가 되었다. 본 논문은 유전자 상호작용(genetic interaction) 데이터, 유전자 발현 데이터, 문헌으로부터 텍스트마이닝 기술을 통해 얻은 이종(heterogeneous) 데이터를 통합하여 암과 관련이 있는 유전자를 찾는 실험을 수행하였다. 또한, 단순히 질병(disease)-정상(normal)의 대조가 아니라 암의 단계(stage)를 고려한 실험을 수행하였다. 데이터를 통합하지 않거나 암의 단계를 고려하지 않았을 경우에 비하여 제안하는 방법이 더 높은 유전자 예측 성능을 나타냈다.
세포의 활동은 단순히 하나의 유전자의 발현으로 설명되기보다 여러 유전자와 그로 인해 생성된 단백질의 상호 작용에 의해 나타난다. 또한 마이크로어레이 실험을 통해 세포 내의 유전자 발현에 대한 정보를 알 수 있게 되고, Chromatin IP 마이크로어레이 실험을 통해 신뢰도가 높은 유전자 발현 조절 관계 데이터를 얻을 수 있게 되면서, 유사한 기능과 유사한 발현 패턴을 보이는 유전자들을 그룹으로 묶어 유전자 모듈로 규정하고 이를 하나의 유전자 조절 네트워크로 구성하고, 분석하는 연구들이 진행되고 있다. 본 논문에서는 ChIP 실험 데이터와 유전자 발현 데이터를 이용하여 지역 정렬을 수행해 하나의 유전자 모듈을 조절하는 조절 프로그램을 예측하는 알고리즘에 대해 기술한다. 조절 프로그램은 유전자 조절 모듈을 조절하는 조절자들의 역할 및 발현 여부에 따른 유전자 조절 모듈 내 유전자들의 발현을 설명할 수 있는 것이다.
Pharmacogenomics는 개인의 유전적 성향과 약물에 대한 반응간의 관계에 대해 연구하는 학문이다. 이를 위해 DNA microarray 데이터를 비롯한 대량의 생물학 데이터가 구축되고 있으며 이러한 대규모 데이터를 분석하기 위해서 기계학습과 데이터 마이닝의 여러 기법들이 이용되고 있다. 본 논문에서는 pharmacogenomics를 위한 생물학 데이터의 효율적인 분석 수단으로 베이지안망(Bayesian network)을 제시한다. 배이지안망은 다수의 변수들간의 확률적 관계를 표현하는 확률그래프모델(probabilistic graphical model)로 유전자 발현과 약물 반응 사이의 확률적 의존 관계를 분석하는데 적합하다. NC160 cell lines dataset으로부터 학습된 베이지안 유전자망(Bayesian genetic network)이 나타내는 관계는 생물학적 실험을 통해 검증된 실제 관계들을 다수 포함하며, 이는 배이지안 유전자망 분석을 통해 개략적인 유전자-유전자, 약물-약물, 유전자-약물 관계를 효율적으로 파악할 수 있음을 나타낸다.
본 논문에서는 주어진 입출력 데이터로부터 유전자 알고리즘을 이용하여 퍼지제어 기를 자동 생성하는 방법에 대하여 기술한다. 주어진 입출력 데이터를 표현하는 퍼지제어기 는 각 유전자에 암호화되고, 퍼지제어기를 표현하는 각 유전자들은 서로 정보를 교환함으로 써 주어진 데이터를 적절히 표현하는 퍼지제어기를 탐색하게 된다. 유전자는 각 입력 변수 의 언어항을 정의하고, 퍼지제어규칙은 정의된 언어항과 주어진 데이터로부터 생성된다. 탐 색과정에서 퍼지제어기의 제어규칙과 각 입력변수의 언어항의 개수와 위치는 계속 변화하여 주어진 입출력 데이터를 잘 설명하는 퍼지제어기를 찾는다.
생명과학분야에서 마이크로어레이 기술은 세포에서의 RNA 발현 프로파일을 관찰할 수 있도록 함으로써 생명현상의 규명 및 약물개발 둥에서 분자수준의 생명현상에 대한 관찰과 분석이 가능 해지고 있다. 마이크로어레이 데이터분석에서는 특정한 처리나 과정에서 현저한 특성을 보이는 유전자를 식별하기 위한 분석뿐만 아니라 유전자 전체인 게놈수준에서의 분석도 이루어진다. 최근 유전자의 발현이 다양한 조절, 신호전달 및 대사경로에 의해서 영향을 받고 있다는 관점에서 게놈수준의 분석에 관심이 증가하고 있다. 약물반응 실험에서는 약물에 대한 게놈수준의 발현 프로파일을 관찰하는 것도 많은 정보를 제공할 수 있다. 약물실험에서는 대조군과 실험군들간에 관심 있는 상대적인 발현특성을 갖는 유전자군을 전체적으로 추출하는 것이 필요한 경우가 있다. 예를 들면 정상군은 두개의 실험군에 대해서 중간청도의 발현정도를 갖는 유전자군을 식별하는 분석을 하는 경우, 생물학적인 데이터의 특성상 절대값을 비교하는 방법으로는 유용한 유전자들을 효과적으로 식별해 낼 수 없다. 이 논문에서는 정상군과 실험군들의 발현정도값의 경향을 판단하기 위해서 각 유전자에 대해서 집단별 대표값을 선정하여 퍼지집합으로 집단의 값의 범위를 결정하고, 이를 이용하여 특정 패턴을 갖는 유전자들을 식별해내는 방법을 제안하고, 실제 데이터를 통해서 실험한 결과를 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.