• Title/Summary/Keyword: 유압 서보 시스템

Search Result 116, Processing Time 0.021 seconds

Design of Assistive Wearable System for Walking (보행 보조 웨어러블 시스템 설계)

  • Choi, Seong-Dae;Lee, Sang-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.111-116
    • /
    • 2019
  • With the recent acceleration of industrial technologies and active research, wearable robot technologies have been applied to various fields. To study the utility of wearable robots, basic research on kinetic mechanisms of the human body, bio-signal analysis, and system control are essential. In this study, we investigated the basic structure of a wearable system and the operating principles of a driving mechanism. The control system and supporting structure, which comprise the driving mechanism, were designed and manufactured. Motion and load analyses were performed simultaneously for the design of the kinematic drive, and the driving mechanism was constructed by analyzing walking motion. The operating conditions of the cylinder were verified by stride via driving experiments. Further, the accuracy and responsiveness of the system were confirmed by comparison with actual motion, and the system safety was validated by applying loads.

A Study on the Design of Estimator for Velocity Control of Electro-hydraulic Servo System (유압 서보시스템의 속도제어를 위한 관측기 설계에 관한 연구)

  • Song, Chang-Seop;Yun, Jang-Sang;Shin, Dae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.64-72
    • /
    • 1991
  • This paper deals with the state estimator and controller. All state variables' feedback in the system were used to improve electro hydraulic servo sysem were used to improve electro hydraulic servo system's responese charact- eristics. Many gains of the state variables'and estimator's are produced by the algebraic Riccati equation, and every state variables'optimal gain and estimator gain is selected by trial and error method. For the designed estimator performance's examination, this paper simulate the time response for the step input, the reduced velocity output in subjected to load torque, and the time response for the step input in changing the inertiamoment.

  • PDF

Position Control of a 1/4 Car Suspension Simulator using a Feedback Linearization Controller (피드백 선형화 제어기를 사용한 1/4 차량 현가장치 시뮬레이터의 위치 제어)

  • Kim, T.H.;Lee, I.Y.
    • Journal of Drive and Control
    • /
    • v.9 no.3
    • /
    • pp.8-15
    • /
    • 2012
  • In the study, a control strategy using a feedback linearization compensator and a disturbance observer was suggested and applied to a hydraulic control system for a vehicle suspension simulator. Although the hydraulic system has comparatively big external loads composed by constant and varying loads, it is ascertained that excellent control performances are obtained with the suggested control strategy.

Design of Torque Servo for Impedance Control of Double Vane Rotary Hydraulic Actuator System (더블 베인 회전형 유압 구동시스템의 임피던스 제어를 위한 토크 서보 설계)

  • Kim, Seon-Min;Choi, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.160-168
    • /
    • 2010
  • In order to achieve a force controller with high performance, an accurate torque servo is required. However, the precise torque servo for a double vane rotary actuator system has not been developed till now, due to many nonlinear characteristics and system parameter variations. In this paper, the torque servo structure for the double vane rotary actuator system is proposed based on the torque model. Nonlinear equations are set up using dynamics of the double vane rotary hydraulic actuator system. Then, to derive the torque model, the nonlinear equations are linearized using a taylor series expansion. Both effectiveness and performance of the design of torque servo are verified by torque servo experiments and applying the suggested torque model to an impedance controller.

Development of a Hydraulic Servo System Real-Time Simulator Using a One-board Microprocessor and Personal Computer (원보드 마이크로 프로세서 제어기 및 PC를 이용한 유압서보시스템의 실시간 시뮬레이터 개발)

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.94-99
    • /
    • 2000
  • In this study applied the general controller into th 16bit ordinary controller and recommand the simulator features the real system's propeties without DSP(Digital Signal Processing)-card. This simulator is designed to be synchronized in real time using A/D(Analog-Digital) convert and D/A(Digital-Analong) convert. In this study DSP card which is usually used for complex calculation is replaced with personal computer and designed to control, control-force using with the 16-bit micro processor.

  • PDF

Development of 3-axis Road Simulator (3축 로드 시뮬레이터 개발)

  • Choi, G.R.;Jeon, S.B.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • The road simulators have become common tools within the automotive industry for evaluation of vehicle and vehicle system durability performance. These simulators need appropriate input signal generation algorithms to realize the actual driving conditions due to non-linear vehicle and test rig behaviour. Although somewhat unconventional from a control standpoint, the iteration approach has proven to be a very effective method for control of complex, multiple degree-of-freedom systems where the tracking parameter is known a priori. In this paper, the road profile replication algorithm is verified by applying Belgian road to the developed road simulator. The simulation and experimental results are included to evaluate the performance of this simulator. This road simulator provides considerable savings in cost, development time, and testing risk during developing automotive components.

  • PDF

Design and Implementation of The Feedback Fuzzy Controller (궤환 퍼지제어기 설계와 구현)

  • 이상윤;신위재
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.401-408
    • /
    • 2000
  • In this paper, we proposed a fuzzy controller that founded by the general feedback control with the new adjustment method when it's tuning. The general feedback controller is operated that supply to the plant making the control input multiplying the appropriate gain of controller on the error between the output of the plant and the reference, But proposed feedback fuzzy controller consist of three loops. The inner loop consists of plant and an ordinary feedback controller. The fuzzy inference of controller performed by the outer loops, which is composed of a fuzzy modeling and inference. We can observe that the output of control system converges toward the reference. Also, the behaviour of feedback fuzzy system is converged from the transient. That is, we verified that designed fuzzy controllers was adapted effectively through the experiments in the hydraulic motor system using floating point DSP processor.

  • PDF

Fuzzy Scheduling for the PID Gain Tuning (PID 이득 동조를 위한 퍼지 스케줄링)

  • Shin Wee-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.120-125
    • /
    • 2005
  • In this paper, We propose the fuzzy controller for the gain tuning of PID controller The proposed controller doesn't use the crisp output error and rule tables though with a fuzzy inference process in forward fuzzifier, New Fuzzy PID Controller assigns relations and ranges of two variables of PID gain parameters. These new gain parameters are calculated by the fuzzy inference with max-min ranges of Kp and Kd. The Ki parameter is computed automatically between Kp and Kd parameter Is calculated by Ziegler-Nickels tuning rules. Finally we experimented the propose controller by the hydraulic servo motor control system. We can obtained desired results through the good control characteristics.

A Study on the Reliability Improvement of the Turbine Control Valve System in Nuclear and Thermal Power Plants (원자력/화력발전소의 터빈제어밸브시스템의 신뢰성 향상에 관한 연구)

  • Yang, Jong Dae;Yang, Seok Jo;Lee, Yong Bum
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.93-100
    • /
    • 2019
  • Nuclear and thermal power plants must provide the turbines with an appropriate degree of high temperature and high pressure steam, to produce the optimum electricity. Additionally, in the event of system and power system failure during electrical production, the steam is immediately disabled, to protect the turbines and generators rotating at high speed. The plant thus uses a special steam control valve system for turbine control, which is opened by force of the hydraulic servo actuator and closed by a large steel spring force. In this study, the causes of failure of the turbine control valve system, a key device of the power plants, were analyzed, and the causes of failure were improved relative to reliability of the equipment.

A Study on the Control of Multi-Input Hydraulic System for Robot Leg using LQR Technique (LQR 기법을 이용한 로봇다리의 다중입력 유압시스템 제어에 관한 연구)

  • Yoo, Sam-Hyeon;Lim, Soo-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.540-547
    • /
    • 2009
  • In the near future, military robots are likely to be substituted for military personnel in the field of battle. The power system of a legged robot is considerably more complex than the one used for a land vehicle because of the coordination and stability issues due to the large number of degree of freedom. In this paper, a servovalve-piston combination system for a straight-line motion of robot leg is modeled as three degree of freedom based on double inputs and single output transfer function. The output is the displacement of piston from neutral. The inputs are valve displacement from neutral and arbitrary load force in this system. LQR(Linear Quadratic Regulator) technique is applied in order to achieve robust stability and fast responses of the system. The Kalman filter loop, rejection of disturbance and noise, riccati equation, filter gain matrix, and frequency domain equality are analyzed and designed.