• Title/Summary/Keyword: 유압로봇

Search Result 116, Processing Time 0.028 seconds

A study on the efficiency improvement of electro-hydraulic pump system by load sensing (부하센싱에 의한 전기유압펌프시스템의 효율 향상에 관한 연구)

  • 황성호;강종우;박성환;하석홍;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1178-1182
    • /
    • 1993
  • Variable-displacement pumps are inherently more efficeint than fixed-displacement pumps under varying loads. Their energy-saving characteristics can be improved by the use of special control. This paper shows the improvement of the system by the use of load-sesing technique.

  • PDF

Study of the dynamic characteristics of a hydraulic power supply (유압공급장치의 동특성에 관한 연구)

  • 이성래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1172-1177
    • /
    • 1993
  • Dynamic characteristics of a hydraulic power supply are studied theoretically and computationally. The transfer function between the supply pressure and the load flow is derived considering relief valve dynamics, accumulator dynamics, and flow line dynamics. Frequency responses and time responses are obtained in many conditions using the transfer function and nonlinear mathematical model respectively.

  • PDF

The Experimental Parameter Identification of Electro-Hydraulic Servo Control System (유압 서어보 제어 시스템의 설계 변수 결정의 실험적 고찰)

  • 김영대;강석종;이관섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.957-961
    • /
    • 1991
  • The parameters of electro-hydraulic servo system are closely dependent on the variation of system characteristics. Especially the parameter sensitivity is incleased in the servo system with heavy load and wide operating range. This paper shows the effect of parameter variation and the experimental parameter values of high power servo system.

  • PDF

Position control of the overdamped electrohydraulic servosystem (과잉 감쇠 반응을 나타내는 전기 유압식 서어보)

  • 송창섭;박태규;김세창
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.340-345
    • /
    • 1987
  • This paper is describes the improvement of the transient response of the electrohydraulic position control system which exhibit the over-damped characteristics. A new approach, Position Error Prefiltered Proportional (PEPP) control, is proposed and the computer simulation results for the transient responses are analyzed. Experimental results using Z-80 microprocessor are presented.

  • PDF

Development of Climbing Hydraulic Robot System's Synchronizing Controller for Construction Automation (시공자동화를 위한 크라이밍 유압로봇시스템의 동기제어 컨트롤러 개발)

  • Cho, Nam-Seok;Kim, Chang-Won;Kim, Dong-In;Lee, Kyu-Won;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.167-169
    • /
    • 2011
  • Construction Automation as a way to solve the problems of lack of skilled labor by decrease in construction population productivity and quality decrease. We are on the way to develop a construction automation system adequate for domestic circumstances in Korea; it is called RCA(Robotic-crane based Construction Automation) system. Climbing hydraulic robot system is a part of RCA system and makes Construction Factory(CF) climb next floor. The controller can control movement needs to be developed for CF safety. Synchronous control the actual field was applied to the controller logic and synchronous control of the process through which the safety has been verified. The purpose of this study that control of climbing hydraulic robot system behavior on real-time, and to improve safety for overall construction automation system through synchronous motion controller.

  • PDF

Redundant Architectural Design of Hydraulic Control System for Reliability Improvement of Underwater Construction Robot (수중건설로봇의 유압 제어 안정성 향상을 위한 이중화 설계)

  • Lee, Jung-Woo;Park, Jeong-Woo;Suh, Jin-Ho;Choi, Young-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.380-385
    • /
    • 2015
  • In the development of an underwater construction robot, the reliability of the operating system is the most important issue because of its huge maintenance cost, especially in a deep sea application. In this paper, we propose a new redundant architectural design for the hydraulic control system of an underwater construction robot. The proposed architecture consists of dual independent modular redundancy management systems linked with a commercial profibus network. A cold standby redundancy management system consisting of a preprocessing switch circuit is applied to the signal network, and a hot standby redundancy management system is adapted to utilize two main controllers.

Hydraulic System Simulation and Vehicle Dynamic Modeling for the Analysis and Development of Tire Roller Prototype (유압 구동식 타이어 로울러 Prototype의 유압 시스템 설계 및 차량 동역학적 모델링)

  • 박춘식;김준호;김상겸;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.137-137
    • /
    • 2000
  • In this research. we developed Tire Roller Prototype which is operated hydraulic transmission system. For develop the theoretically computer aided system, we practiced the simulation of hydraulic system and dynamic modeling and will compare with the experiment results of Tire Roller Prototype. We conceptualize the new hydraulic system and derive the equations of motion for dynamic analysis. Finally, we will design the controller, which can manage the hydraulic circuit of servo mechanism system. We define new hydraulic system and integrate modeling of Tire Roller through simulation of h\ulcornerdraulic system and design of controller. From above procedure. Hydraulic transmission system characteristics and target performance can be investigated. To follow the required performance, we select the parts of Tire Roller. We manufactured the prototype of Tire Roller, and will install the equipment for experiment.

  • PDF

Dimensional Characteristics of Hydraulic Actuator Curve based on 3D Printing Filament Materials (3D 프린팅 필라멘트 재료에 따른 유압액츄에이터 커브의 치수 특성)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.74-79
    • /
    • 2021
  • In this paper, the 3D shape of a hydraulic actuator cover was 3D printed by applying two materials, namely PLA and ABS. Subsequently, the printed shape was scanned to analyze the material properties, dimensional change characteristics, dimensions, and scan shape as a real model. To compare and analyze material-specific 3D printing dimensions, a non-contact mobile laser scanner was used to scan a portion of the printed hydraulic actuator cover and the final alignment shape of the 3D printed part was studied on the basis of the design model.