• Title/Summary/Keyword: 유사 라벨

Search Result 47, Processing Time 0.03 seconds

Root Cause Analysis: A Medication Error (투약 오류 건에 대한 근본원인분석 시행)

  • Song, Myeng Hee;Chun, Ja Hae;Koh, Hong;Kim, Ki Jun
    • Quality Improvement in Health Care
    • /
    • v.18 no.1
    • /
    • pp.79-87
    • /
    • 2012
  • 문제: 투약오류는 의료기관 전반에서 가장 많이 발생하는 오류의 하나이며, 환자에게 중대한 위해를 초래하기도 한다. 특히 고농축전해질은 문제발생의 가능성과 위험성이 높아 지속적인 관리 및 교육을 필요로 하고 있다. 목적: 발생한 투약오류 건에 대한 근본원인분석을 시행함으로써 유사사례가 발생하는 것을 예방하여 환자안전을 도모하고자 한다. 의료기관: 연세대학교 세브란스병원 질 향상 활동: 투약오류 건에 대해 근본원인분석 시행 후 고위험약물 관련 내규를 보완하였고, 고위험약물에 대한 Alert System 개발, 고위험약물 라벨 부착, 약 처방 관련 의료진 교육을 시행하였다. 개선효과: 고위험약물 투여와 관련된 시스템 개선 활동 이후 유사사례는 발생하지 않았고, 의료진 교육을 통하여 환자안전에 대한 인식과 중요성을 더욱 증가시켰다.

  • PDF

Wine Label Character Recognition in Mobile Phone Images using a Lexicon-Driven Post-Processing (사전기반 후처리를 이용한 모바일 폰 영상에서 와인 라벨 문자 인식)

  • Lim, Jun-Sik;Kim, Soo-Hyung;Lee, Chil-Woo;Lee, Guee-Sang;Yang, Hyung-Jung;Lee, Myung-Eun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.546-550
    • /
    • 2010
  • In this paper, we propose a method for the postprocessing of cursive script recognition in Wine Label Images. The proposed method mainly consists of three steps: combination matrix generation, character combination filtering, string matching. Firstly, the combination matrix generation step detects all possible combinations from a recognition result for each of the pieces. Secondly, the unnecessary information in the combination matrix is removed by comparing with bigram of word in the lexicon. Finally, string matching step decides the identity of result as a best matched word in the lexicon based on the levenshtein distance. An experimental result shows that the recognition accuracy is 85.8%.

An Analysis on the Phoneme Duration Modeling For the Trainable TTS System (Trainable TTS System을 위한 음운 지속시간 모델링)

  • Seo Jiln;Lee Yanghee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.109-112
    • /
    • 2001
  • 본 논문에서는 한국어 Trainable TTS System의 자연스러운 음성 합성을 위해 400문장(어절수 : 6,220, 음운수: 총43,701: 자음 23,899,모음: 19,802)에 대하여 단일 남성화자가 발성한 문 음성 데이터를 음운레벨세그먼트, 음운 라벨링 ,어절간의 띄어쓰기 ,어절에 대한 음운별 품사가 태깅된 문 음성 코퍼스를 사용하여 음운 환경과 품사에 의하여 음운의 지속시간이 어떻게 변화하는가에 대하여 통계적으로 분석하였다. 그리고 음운 지속시간을 보다 정교하게 예측하기 위하여, 각 음운에 대한 고유 지속시간의 영향이 배제된 정규화 음운지속시간에 대한 회귀트리를 이용하여 정규화 지속시간에 영향을 미치는 특징요소들 간의 관계를 통계적인 방법으로 분석하였다. 그 결과 문법적인 특징요소를 나타내는 요소들간에 서로 상관이 높게 나타나는 것을 알 수 있었다 그리고 이러한 경우 유사한 특징 요소들간에 상관이 1에 가까울 정도로 상관이 높은 요소들의 경우 예측지수가 낮은 요소들을 제거하여도 지속시간변화에 영향을 미치지 못하는 것으로 나타났다. 그 결과 문법적 성질이 유사한 특징 요소들을 회귀트리를 통해 모델링할 경우에 요소들간의 상관정도를 분석하여 최소한의 특징요소들을 선택 할 수 있는 방법을 제시하였다 그리고 이를 토대로 한 정규화 회귀트리의 모델링이 지속시간 회귀트리 모델링보다 우수함을 입증하였다.

  • PDF

A Method for Twitter Spam Detection Using N-Gram Dictionary Under Limited Labeling (트레이닝 데이터가 제한된 환경에서 N-Gram 사전을 이용한 트위터 스팸 탐지 방법)

  • Choi, Hyeok-Jun;Park, Cheong Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.445-456
    • /
    • 2017
  • In this paper, we propose a method to detect spam tweets containing unhealthy information by using an n-gram dictionary under limited labeling. Spam tweets that contain unhealthy information have a tendency to use similar words and sentences. Based on this characteristic, we show that spam tweets can be effectively detected by applying a Naive Bayesian classifier using n-gram dictionaries which are constructed from spam tweets and normal tweets. On the other hand, constructing an initial training set requires very high cost because a large amount of data flows in real time in a twitter. Therefore, there is a need for a spam detection method that can be applied in an environment where the initial training set is very small or non exist. To solve the problem, we propose a method to generate pseudo-labels by utilizing twitter's retweet function and use them for the configuration of the initial training set and the n-gram dictionary update. The results from various experiments using 1.3 million korean tweets collected from December 1, 2016 to December 7, 2016 prove that the proposed method has superior performance than the compared spam detection methods.

Robust Hand-Region Detecting Based On The Structure (환경 변화에 강인한 구조 기반 손 영역 탐지)

  • Lim, Kyoung-Jin;Jeon, Mi-Yeon;Hong, Rok-Ki;Seo, Seong-Won;Shin, Mi-Hae;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.389-392
    • /
    • 2010
  • In this paper, it presents to detect location using structural information of hand from the input color images on Webcam and to recognize hand gestures. In this system, based on the skin color, the image changes a binary number and labels. Within each labeled area, we can find the Maximum Inscribed Circle using Voronoi Diagram. This circle can find the center of hand. And the circle extracts hand region from analyzing the ellipse elements to relate Maximum Inscribed Circle. We use the Maximum Inscribed Circle and the ellipse elements as characteristic of hand gesture recognition. In various environments, we cannot recognize the object that have similar colors like the background colors. But the proposed algorithm has the advantage that can be effectively eliminated about it.

  • PDF

A Study on GPR Image Classification by Semi-supervised Learning with CNN (CNN 기반의 준지도학습을 활용한 GPR 이미지 분류)

  • Kim, Hye-Mee;Bae, Hye-Rim
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.197-206
    • /
    • 2021
  • GPR data is used for underground exploration. The data gathered are interpreted by experts based on experience as the underground facilities often reflect GPR. In addition, GPR data are different in the noise and characteristics of the data depending on the equipment, environment, etc. This often results in insufficient data with accurate labels. Generally, a large amount of training data have to be obtained to apply CNN models that exhibit high performance in image classification problems. However, due to the characteristics of GPR data, it makes difficult to obtain sufficient data. Finally, this makes neural networks unable to learn based on general supervised learning methods. This paper proposes an image classification method considering data characteristics to ensure that the accuracy of each label is similar. The proposed method is based on semi-supervised learning, and the image is classified using clustering techniques after extracting the feature values of the image from the neural network. This method can be utilized not only when the amount of the labeled data is insufficient, but also when labels that depend on the data are not highly reliable.

Boundary-enhanced SAR Water Segmentation using Adversarial Learning of Deep Neural Networks (적대적 학습 개념을 도입한 경계 강화 SAR 수체탐지 딥러닝 모델)

  • Hwisong Kim;Duk-jin Kim;Junwoo Kim;Seungwoo Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.2-2
    • /
    • 2023
  • 기후변화가 가속화로 인해 수재해의 빈도와 강도 예측이 어려워짐에 따라 실시간 홍수 모니터링에 대한 수요가 증가하고 있다. 합성개구레이다는 광원과 날씨에 무관하게 촬영이 가능하여 수재해 발생시에도 영상을 확보할 수 있다. 합성개구레이다를 활용한 수체 탐지 알고리즘 개발이 활발히 연구되어 왔고, 딥러닝의 발달로 CNN을 활용하여 높은 정확도로 수체 탐지가 기능해졌다. 하지만, CNN 기반 수체 탐지 모델은 훈련시 높은 정량적 정확성 지표를 달성하여도 추론 후 정성적 평가시 경계와 소하천에 대한 탐지 정확성이 떨어진다. 홍수 모니터링에서 특히 중요한 정보인 경계와 좁은 하천에 대해서 정확성이 떨어짐에 따라 실생활 적용이 어렵다. 이에 경계를 강화한 적대적 학습 기반의 수체 탐지 모델을 개발하여 더 세밀하고 정확하게 탐지하고자 한다. 적대적 학습은 생성적 적대 신경망(GAN)의 두 개의 모델인 생성자와 판별자가 서로 관여하며 더 높은 정확도를 달성할 수 있도록 학습이다. 이러한 적대적 학습 개념을 수체 탐지 모델에 처음으로 도입하여, 생성자는 실제 라벨 데이터와 유사하게 수체 경계와 소하천까지 탐지하고자 학습한다. 반면 판별자는 경계 거리 변환 맵과 합성개구레이다 영상을 기반으로 라벨데이터와 수체 탐지 결과를 구분한다. 경계가 강화될 수 있도록, 면적과 경계를 모두 고려할 수 있는 손실함수 조합을 구성하였다. 제안 모델이 경계와 소하천을 정확히 탐지하는지 판단하기 위해, 정량적 지표로 F1-score를 사용하였으며, 육안 판독을 통해 정성적 평가도 진행하였다. 기존 U-Net 모델이 탐지하지 못하던 영역에 대해 제안한 경계 강화 적대적 수체 탐지 모델이 수체의 세밀한 부분까지 탐지할 수 있음을 증명하였다.

  • PDF

Within-Cluster-Discriminative Fuzzy Clustering (클러스터 내 분별 오류 최소화를 위한 퍼지 클러스터링)

  • Heo, Gyeongyong;Lee, Soojong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.269-270
    • /
    • 2013
  • 퍼지 클러스터링은 유사도가 높은 데이터 포인트들이 동일한 클러스터에 포함되도록 하는 대표적인 비교사 학습 방법 중 하나이다. 이 논문에서는 클러스터링을 분류기의 전처리 단계에서 활용할 수 있도록 클러스터 내에서 분류 오류가 최소가 될 수 있도록 클러스터를 생성할 수 있는 새로운 퍼지 클러스터링 방법을 제안한다. 제안하는 클러스터링은 특징 벡터와 함께 클래스 라벨을 활용하므로 분류기와 결합하여 사용할 경우 기존 분류기와 함께 사용할 경우 보다 우수한 성능을 기대할 수 있다.

  • PDF

Adaptive Region Segmentation using Static/Dynamic Pattern Matching (정적/동적 패턴을 이용한 적응적 영역 분할 방법)

  • Park, Kyoung-Hwan;Lee, Chi-Won;Lee, Chang-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.145-148
    • /
    • 2010
  • 본 논문에서 우리는 도로 영역과 하늘 영역, 그리고 도로와 하늘이 아닌 나머지 영역으로 분할하기 위해 동적인(dynamic) 패턴을 이용한 적응적인(adaptive) 병합 방법을 제안한다. 원본영상에서 Mean Shift 알고리즘과 라벨링(Labeling)을 수행하고 영역을 과분할 한다. 컬러에 의해서 도로와 하늘영역이 검출되지 못하는 영역을 위해서 도로 영역과 하늘 영역에서 동적인 패턴 추출한 후 매칭을 통해 유사 영역을 병합한다. 이것은 도로와 하늘의 정보를 현재 환경에서 적응적으로 추출하는 방법이다. 실험에서 정적인(static) 패턴을 사용해서 병합하는 방법과 동적인 패턴을 사용해서 병합하는 방법을 비교하였다. 그 결과, 동적인 패턴을 사용하였을 때 8.12%의 향상된 성능을 보였다.

  • PDF

Comparing Laboratory Responses of Engineered Emulsified Asphalt and Foamed Asphalt Mixtures for Cold In-place Recycling Pavement (현장 상온 재생 아스팔트 포장을 위한 고점착 유화 아스팔트 혼합물과 폼드 아스팔트 혼합물의 반응특성 비교)

  • Kim, Yong-Joo Thomas;Lee, Ho-Sin David
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.79-86
    • /
    • 2010
  • Cold in-place recycling (CIR) using emulsified asphalt or foamed asphalt has become a more common practice in rehabilitating the existing asphalt pavement due to its cost effectiveness and the conservation of paving materials. As CIR continues to evolve, the engineered emulsified asphalt was developed to improve the field performances such as coating, raveling, retained stability value and curing time. The main objective of this research is to compare the laboratory responses of the engineered emulsified asphalt (CIR-EE) mixtures against the foamed asphalt (CIR-foam) mixtures using the reclaimed asphalt pavement (RAP)materials collected from the CIR project on U.S. 20 Highway in Iowa. Based on the visual observation of laboratory specimens, the engineered emulsified asphalt coated the RAP materials better than the foamed asphalt because the foamed asphalt is to create a mastic mixture structure rather than coating RAP materials. Given the same compaction effort, CIR-EE specimens exhibited lesser density than CIR-foam specimens. Both Marshall stability and indirect tensile strength of CIR-EE specimens were about same as those of CIR-foam specimens. However, Marshall stability and indirect tensile strength of the vacuum-saturated wet specimens of CIR-EE mixtures were higher than those of CIR-foam mixtures. After four hours of curing in the room temperature, the CIR-EE specimens showed less raveling than the CIR-foam specimens. On the basis of test results, it can be concluded that the CIR-EE mixtures is less susceptible to moisture and more raveling resistant than CIR-foam mixtures.