Song, Myeng Hee;Chun, Ja Hae;Koh, Hong;Kim, Ki Jun
Quality Improvement in Health Care
/
v.18
no.1
/
pp.79-87
/
2012
문제: 투약오류는 의료기관 전반에서 가장 많이 발생하는 오류의 하나이며, 환자에게 중대한 위해를 초래하기도 한다. 특히 고농축전해질은 문제발생의 가능성과 위험성이 높아 지속적인 관리 및 교육을 필요로 하고 있다. 목적: 발생한 투약오류 건에 대한 근본원인분석을 시행함으로써 유사사례가 발생하는 것을 예방하여 환자안전을 도모하고자 한다. 의료기관: 연세대학교 세브란스병원 질 향상 활동: 투약오류 건에 대해 근본원인분석 시행 후 고위험약물 관련 내규를 보완하였고, 고위험약물에 대한 Alert System 개발, 고위험약물 라벨 부착, 약 처방 관련 의료진 교육을 시행하였다. 개선효과: 고위험약물 투여와 관련된 시스템 개선 활동 이후 유사사례는 발생하지 않았고, 의료진 교육을 통하여 환자안전에 대한 인식과 중요성을 더욱 증가시켰다.
In this paper, we propose a method for the postprocessing of cursive script recognition in Wine Label Images. The proposed method mainly consists of three steps: combination matrix generation, character combination filtering, string matching. Firstly, the combination matrix generation step detects all possible combinations from a recognition result for each of the pieces. Secondly, the unnecessary information in the combination matrix is removed by comparing with bigram of word in the lexicon. Finally, string matching step decides the identity of result as a best matched word in the lexicon based on the levenshtein distance. An experimental result shows that the recognition accuracy is 85.8%.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.109-112
/
2001
본 논문에서는 한국어 Trainable TTS System의 자연스러운 음성 합성을 위해 400문장(어절수 : 6,220, 음운수: 총43,701: 자음 23,899,모음: 19,802)에 대하여 단일 남성화자가 발성한 문 음성 데이터를 음운레벨세그먼트, 음운 라벨링 ,어절간의 띄어쓰기 ,어절에 대한 음운별 품사가 태깅된 문 음성 코퍼스를 사용하여 음운 환경과 품사에 의하여 음운의 지속시간이 어떻게 변화하는가에 대하여 통계적으로 분석하였다. 그리고 음운 지속시간을 보다 정교하게 예측하기 위하여, 각 음운에 대한 고유 지속시간의 영향이 배제된 정규화 음운지속시간에 대한 회귀트리를 이용하여 정규화 지속시간에 영향을 미치는 특징요소들 간의 관계를 통계적인 방법으로 분석하였다. 그 결과 문법적인 특징요소를 나타내는 요소들간에 서로 상관이 높게 나타나는 것을 알 수 있었다 그리고 이러한 경우 유사한 특징 요소들간에 상관이 1에 가까울 정도로 상관이 높은 요소들의 경우 예측지수가 낮은 요소들을 제거하여도 지속시간변화에 영향을 미치지 못하는 것으로 나타났다. 그 결과 문법적 성질이 유사한 특징 요소들을 회귀트리를 통해 모델링할 경우에 요소들간의 상관정도를 분석하여 최소한의 특징요소들을 선택 할 수 있는 방법을 제시하였다 그리고 이를 토대로 한 정규화 회귀트리의 모델링이 지속시간 회귀트리 모델링보다 우수함을 입증하였다.
KIPS Transactions on Software and Data Engineering
/
v.6
no.9
/
pp.445-456
/
2017
In this paper, we propose a method to detect spam tweets containing unhealthy information by using an n-gram dictionary under limited labeling. Spam tweets that contain unhealthy information have a tendency to use similar words and sentences. Based on this characteristic, we show that spam tweets can be effectively detected by applying a Naive Bayesian classifier using n-gram dictionaries which are constructed from spam tweets and normal tweets. On the other hand, constructing an initial training set requires very high cost because a large amount of data flows in real time in a twitter. Therefore, there is a need for a spam detection method that can be applied in an environment where the initial training set is very small or non exist. To solve the problem, we propose a method to generate pseudo-labels by utilizing twitter's retweet function and use them for the configuration of the initial training set and the n-gram dictionary update. The results from various experiments using 1.3 million korean tweets collected from December 1, 2016 to December 7, 2016 prove that the proposed method has superior performance than the compared spam detection methods.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.05a
/
pp.389-392
/
2010
In this paper, it presents to detect location using structural information of hand from the input color images on Webcam and to recognize hand gestures. In this system, based on the skin color, the image changes a binary number and labels. Within each labeled area, we can find the Maximum Inscribed Circle using Voronoi Diagram. This circle can find the center of hand. And the circle extracts hand region from analyzing the ellipse elements to relate Maximum Inscribed Circle. We use the Maximum Inscribed Circle and the ellipse elements as characteristic of hand gesture recognition. In various environments, we cannot recognize the object that have similar colors like the background colors. But the proposed algorithm has the advantage that can be effectively eliminated about it.
GPR data is used for underground exploration. The data gathered are interpreted by experts based on experience as the underground facilities often reflect GPR. In addition, GPR data are different in the noise and characteristics of the data depending on the equipment, environment, etc. This often results in insufficient data with accurate labels. Generally, a large amount of training data have to be obtained to apply CNN models that exhibit high performance in image classification problems. However, due to the characteristics of GPR data, it makes difficult to obtain sufficient data. Finally, this makes neural networks unable to learn based on general supervised learning methods. This paper proposes an image classification method considering data characteristics to ensure that the accuracy of each label is similar. The proposed method is based on semi-supervised learning, and the image is classified using clustering techniques after extracting the feature values of the image from the neural network. This method can be utilized not only when the amount of the labeled data is insufficient, but also when labels that depend on the data are not highly reliable.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.2-2
/
2023
기후변화가 가속화로 인해 수재해의 빈도와 강도 예측이 어려워짐에 따라 실시간 홍수 모니터링에 대한 수요가 증가하고 있다. 합성개구레이다는 광원과 날씨에 무관하게 촬영이 가능하여 수재해 발생시에도 영상을 확보할 수 있다. 합성개구레이다를 활용한 수체 탐지 알고리즘 개발이 활발히 연구되어 왔고, 딥러닝의 발달로 CNN을 활용하여 높은 정확도로 수체 탐지가 기능해졌다. 하지만, CNN 기반 수체 탐지 모델은 훈련시 높은 정량적 정확성 지표를 달성하여도 추론 후 정성적 평가시 경계와 소하천에 대한 탐지 정확성이 떨어진다. 홍수 모니터링에서 특히 중요한 정보인 경계와 좁은 하천에 대해서 정확성이 떨어짐에 따라 실생활 적용이 어렵다. 이에 경계를 강화한 적대적 학습 기반의 수체 탐지 모델을 개발하여 더 세밀하고 정확하게 탐지하고자 한다. 적대적 학습은 생성적 적대 신경망(GAN)의 두 개의 모델인 생성자와 판별자가 서로 관여하며 더 높은 정확도를 달성할 수 있도록 학습이다. 이러한 적대적 학습 개념을 수체 탐지 모델에 처음으로 도입하여, 생성자는 실제 라벨 데이터와 유사하게 수체 경계와 소하천까지 탐지하고자 학습한다. 반면 판별자는 경계 거리 변환 맵과 합성개구레이다 영상을 기반으로 라벨데이터와 수체 탐지 결과를 구분한다. 경계가 강화될 수 있도록, 면적과 경계를 모두 고려할 수 있는 손실함수 조합을 구성하였다. 제안 모델이 경계와 소하천을 정확히 탐지하는지 판단하기 위해, 정량적 지표로 F1-score를 사용하였으며, 육안 판독을 통해 정성적 평가도 진행하였다. 기존 U-Net 모델이 탐지하지 못하던 영역에 대해 제안한 경계 강화 적대적 수체 탐지 모델이 수체의 세밀한 부분까지 탐지할 수 있음을 증명하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2013.07a
/
pp.269-270
/
2013
퍼지 클러스터링은 유사도가 높은 데이터 포인트들이 동일한 클러스터에 포함되도록 하는 대표적인 비교사 학습 방법 중 하나이다. 이 논문에서는 클러스터링을 분류기의 전처리 단계에서 활용할 수 있도록 클러스터 내에서 분류 오류가 최소가 될 수 있도록 클러스터를 생성할 수 있는 새로운 퍼지 클러스터링 방법을 제안한다. 제안하는 클러스터링은 특징 벡터와 함께 클래스 라벨을 활용하므로 분류기와 결합하여 사용할 경우 기존 분류기와 함께 사용할 경우 보다 우수한 성능을 기대할 수 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2010.07a
/
pp.145-148
/
2010
본 논문에서 우리는 도로 영역과 하늘 영역, 그리고 도로와 하늘이 아닌 나머지 영역으로 분할하기 위해 동적인(dynamic) 패턴을 이용한 적응적인(adaptive) 병합 방법을 제안한다. 원본영상에서 Mean Shift 알고리즘과 라벨링(Labeling)을 수행하고 영역을 과분할 한다. 컬러에 의해서 도로와 하늘영역이 검출되지 못하는 영역을 위해서 도로 영역과 하늘 영역에서 동적인 패턴 추출한 후 매칭을 통해 유사 영역을 병합한다. 이것은 도로와 하늘의 정보를 현재 환경에서 적응적으로 추출하는 방법이다. 실험에서 정적인(static) 패턴을 사용해서 병합하는 방법과 동적인 패턴을 사용해서 병합하는 방법을 비교하였다. 그 결과, 동적인 패턴을 사용하였을 때 8.12%의 향상된 성능을 보였다.
Cold in-place recycling (CIR) using emulsified asphalt or foamed asphalt has become a more common practice in rehabilitating the existing asphalt pavement due to its cost effectiveness and the conservation of paving materials. As CIR continues to evolve, the engineered emulsified asphalt was developed to improve the field performances such as coating, raveling, retained stability value and curing time. The main objective of this research is to compare the laboratory responses of the engineered emulsified asphalt (CIR-EE) mixtures against the foamed asphalt (CIR-foam) mixtures using the reclaimed asphalt pavement (RAP)materials collected from the CIR project on U.S. 20 Highway in Iowa. Based on the visual observation of laboratory specimens, the engineered emulsified asphalt coated the RAP materials better than the foamed asphalt because the foamed asphalt is to create a mastic mixture structure rather than coating RAP materials. Given the same compaction effort, CIR-EE specimens exhibited lesser density than CIR-foam specimens. Both Marshall stability and indirect tensile strength of CIR-EE specimens were about same as those of CIR-foam specimens. However, Marshall stability and indirect tensile strength of the vacuum-saturated wet specimens of CIR-EE mixtures were higher than those of CIR-foam mixtures. After four hours of curing in the room temperature, the CIR-EE specimens showed less raveling than the CIR-foam specimens. On the basis of test results, it can be concluded that the CIR-EE mixtures is less susceptible to moisture and more raveling resistant than CIR-foam mixtures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.