• Title/Summary/Keyword: 유리직물

Search Result 53, Processing Time 0.029 seconds

Structural Performance of Joints for Partial Reinforced Beam Using GFRP Laminated Plate and Cylindrical Reinforced LVL Column (GFRP적층판을 활용한 보강보부재와 원통형 단판적층기둥재 접합부의 내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, Jung-Jae;Suh, Jin-Suk;Park, Sang-Bum;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.282-289
    • /
    • 2014
  • After being laminated with a combination of glass fiber reinforced plastic and plywood, the GFRP laminated plate was densificated for 1 hour at $150^{\circ}C$ with pressure of $1.96N/mm^2$. A partial reinforced beam was produced by attaching the 5 GFRP laminated plates to the joint of glulam and the column. In addition, the column to beam joint was produced by using reinforced laminated wooden pin which was made of GFRP sheet and plywood, fiber glass reinforced cylindrical-LVL column. The joint was made of round log, glulam and drift pin as the reference specimen, and its moment resistance was evaluated. As a result, the strength performance of specimens with partial reinforced beams were 1.8 times stronger than the reference specimen on average. Furthermore, rupture was neither occurred on partial reinforced beam nor column. Toughness and stiffness of joints were also fine. The GFRP sheet reinforced laminated plate showed better reinforcement effect than GFRP textile reinforced one. GFRP sheet was inserted into each layer of laminate, and it showed good condition in rotation-angle and strength, therefore it is the most appropriate to reinforce the part of the beam.

Study of the Mechanical Properties of GFRTP by Pressure Additives and Compounding (첨가제 배합 및 압력에 따른 GFRTP의 기계적 특성 연구)

  • Oh, Seung Min;Kim, Jong Su;Seol, Gyun Ho;Yun, Ye Ji;Kim, Young Min;Yang, Dong Su;No, Su Jin;Lee, Gyu Se;Gang, Sung Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.9-13
    • /
    • 2014
  • Glass fiber reinforced thermoplastics(GFRTP) is made by adding chemical additive to glass fabric which is strong at a high temperate, incorrodible, and good at intensity and specific gravity. Although we focused on the weight lightening, the intensity of GFRTP is also important. To remedy thermoplastic resin's inferior property of matter to thermo-hardening resin, we formed several specimen, differing the chemical additive as Homo PP, MAPP 3%, Rubber 5%, and mixed. We put pressure of 5 type on the specimens. The analyses result for the different pressure, the resin spreads evenly, then the coherence is increased. Eventually, the mechanical properties are changed. When high intensity is needed, it is good idea to use polypropylene(PP) which has good coherence with glass fabric as chemical additive. We can get better intensity when we form the resin at the optimum pressure depending on mixing of chemical additive and glass fabric than when we increase the pressure.

Experimental Study on the Material Characteristics of Glass Fiber Composties (유리섬유복합재료의 재료특성에 관한 실험적 연구)

  • Park, Jong-Myen;Seo, Hyun-Su;Kwon, Min-Ho;Lim, Jeong-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • In the study, tensile, compression and in-plane tests about longitudinal direction of glass fiber were performed. Also, to obtain the material properties of GFRP fabric composite, tensile test was performed. All test were performed by the test method of ASTM. Maximum compressive strength was smaller than the maximum tensile strength at the longitudinal direction test results. Elastic modulus of the tensile and compressive was almost similar at the compression test results in the longitudinal direction. Based on the GFRP fabric composite test results, GF91 was showed good performance at maximum compressive, maximum strain and elastic modulus.

Aging Characteristics of Glass Fabric/Phenolic Composites in Train Carbody (철도차량용 유리섬유직물/페놀릭 복합재의 가속노화 특성)

  • Yoon Sung-Ho;Nam Jung-Pyo;Hwang Young-Eun;Shin Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.352-357
    • /
    • 2004
  • In this study. the effects of combined environmental factors on mechanical and thermal analysis properties of graphite/epoxy composites were evaluated through a 2.5KW accelerated environmental aging tester. Environmental factors such as temperature. moisture, and ultraviolet were considered. A xenon-arc lamp was utilized for ultraviolet light. and exposure times of up to 3000 hours were applied. Several types of specimens - tensile, bending, and shear specimens those are warp direction and fill direction were used to investigate the effects of environmental factors on mechanical properties of the composites. The glass fabric $\sharp$650/AP300 was used for the fabrication of specimens. Mechanical degradations for tensile, bending and shear properties were evaluated through a UTM. Also. storage shear modulus. loss shear modulus, and tan $\delta$ were measured as a function of exposure times through a dynamic mechanical analyzer. Finally exposed surfaces of the composites were examined using II scanning electron microscope.

  • PDF

Microstructure and Electromagnetic Property of MWNT-added Glass Fabric/Epoxy Composites (다중벽 나노튜브가 첨가된 유리 직물 복합재료의 미세구조 및 전자기적 물성)

  • Lee sang-Eui;Lee Won-Jun;Kim Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.169-172
    • /
    • 2004
  • We fabricated MWNT-added glass fabric/epoxy composites. We observed the distribution of MWNTs in the composites using scanning electron microscopy and conformed that most of MWNTs exist in matrix rich region and interface between yams in warp and fill directions. We also investigated the change of permittivities with MWNT concentrations. Only $1wt\%$ MWNTs leads to high permittivity and electromagnetic waves are impossible to be transmitted to more than $3wt\%$ MWNT-added composites, which means the characteristics of these composites are comparable to those of metals or carbon fiber-reinforced composites.

  • PDF

Conservation and Analysis of Gilding Silver Buddhas and Relics Discovered Inside Buddha of Joseon Period (조선시대 은제금도금불상과 그 복장품의 보존처리 및 재질연구)

  • Kwon, Yoonmi;Park, Seungwon;Yu, Heisun;Choi, Heeyoon;Yun, Eunyeong
    • Conservation Science in Museum
    • /
    • v.9
    • /
    • pp.31-49
    • /
    • 2008
  • We have investigated and conserved three small Buddha statues dating from Joseon period that were purchased by the National Museum of Korea. Chemical analysis and investigation of internal structures were enabled us to identify its compositions and hollow spaces which have various materials just like fabrics, silver ornaments, beads and wood fragments. The fabrics date from the early years of the Joseon dynasty to the middle one. The compositions of matrix of the Buddha statues vary 80-90 wt% Ag and 7-15 wt% Cu. And its surface layers were gilt with amalgam. Mechanical and chemical cleaning with EDTA-2Na were applied together during the cleaning process.

A study on the functional coatings using silicone resin of Architectural membrane structures products (건축용 막구조 제품의 실리콘 기능성 코팅에 관한 연구)

  • Choi, Yun-Sung;Lee, Jang-Hun;Yoon, Nam-Sik;Kim, Su-Hong;Yoo, Gu-Geun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.106-106
    • /
    • 2012
  • 막구조(Membrane structure)란 건축분야에서 "fabric structure" 또는 tension structure"와 같이 사용되는 용어로 코팅된 직물(coated fabrics)을 주재료로 사용하는 구조를 말한다. 특히 구조체로서 연성의 막을 이용 이것에 초기 장력을 주어 강성을 늘림으로서 외부하중에 대하여 안정된 형태를 유지하는 장점을 갖고 있다. 초기 창안된 독일의 온화한 기후에 적용되는 반면 한국이나 일본에는 60m/sec를 넘나드는 태풍의 피해와 많은 적설량을 보이는 기후적 제약으로 발달되지 못하였다. 그러나 최근 새로운 소재의 막구조 제품 개발과 구조해석 방법 및 시공기술 등이 개발되어 보편화되어지고 있는 실정이다. 막구조용 재료로 사용되는 섬유소재는 주로 Polyester직물을 기재로 한 PVC 코팅 제품으로 일반 PVC 막재는 장력이 약하고, 광선에 의한 물성이 쉽게 변화되어 내구연한이 5~15년에 불과하다. 유리섬유나 아라미드섬유 등으로 제직한 기재에 고내열 실리콘이나 PTFE 수지를 코팅한 제품은 약품에 대한 내구성이 높고 자외선에 대해서는 매우 큰 저항성을 가지기 때문에 내구연한이 10년에서 30년 까지도 향상된다. 그러나 실리콘 코팅막은 세계적으로 가장 좋은 막재로 알려졌으나 자정능력(Self Cleaning)에 문제가 발생되어 사용량이 감소 추세라고 할 수 있다. 일반적인 코팅 가공의 경우 MEK, Toluene, DMF 등과 같은 유기용제를 다량 사용함에 따라 작업환경 및 대기오염, 화재 위험 등의 문제점이 있으며 특히 가공시 잔류되는 유기용제의 심각성이 대두되고 있는 상황이다. 이와 같이 코팅 가공제 자체를 친환경적인 물질로 대체하여 각종 환경규제에 대응하고 유해 폐기물의 발생을 줄일 수 있는 코팅 가공제 및 가공기술 개발이 절실하다. 이에 본 연구에서는 Glass-Fiber, Aramid 등의 슈퍼 섬유와 고 강력 섬유 등을 이용하여 PTFE 코팅제품과 비슷한 수준의 성능을 부여하는 무용제형 실리콘 코팅 수지를 개발하고 내구성능 향상, Self Cleaning성, 난연성, 자외선 차단, 인장강도 및 인열 강도의 향상 등 다양한 기능성을 부여하는 최적의 환경 친화적 코팅 공정 기술을 개발하여 차세대 건축용 막구조 제품을 개발하고자 한다.

  • PDF

The Effect of Circulat Hole Size and Distribution on Strength of Braided Composite (브레이드 복합재료의 원공의 크기와 분포가 재료강도에 미치는 영향)

  • Lee, Gyeong-U;Gang, Tae-Jin
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.253-258
    • /
    • 1994
  • The effect of hole size and hole-to-hole distance in the braided and laminated composite was studied in terms of tensile strength, pin bearing strength, and flexural strength of S2-glass fiber braided polyester. The tensile strength reduction with hole size was well fitted with he Whitney and Nuismer's prediction for the laminated composite. The characteristic distance was measured to be about 1.6mm for braided composite and 1.8mm for laminated one. The effect of distance between the centers of two circu lar holes on tensile strength was negligible when the distance between these two holes was larger than 4 times of the diameter of circular hole for both braided and laminated composite. The side effect was diminished when the center of hole was located 3 times farther than the diamet.er of the hole. The pin bearing strengths was decreased with the size of pin hole for both braided and laminated composite.

  • PDF

Effect of Textile Pattern on Mechanical and Impregnation Properties of Glass Fiber/Thermoplastic Composite (유리 섬유/열가소성 복합 재료의 기계적 및 함침 특성에 대한 직물 패턴의 영향)

  • Kim, Neul-Sae-Rom;Lee, Eun-Soo;Jang, Yeong-Jin;Kwon, Dong-Jun;Yang, Seong Baek;Yeom, Jung-Hyun
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.317-322
    • /
    • 2018
  • In various industry, the composite is tried to be applied to products and thermoplastic based composite is in the spotlight because this composite can be recycled. The use of continuous fiber thermoplastic (CFT) method increased gradually than long fiber thermoplastic (LFT). In this study, tensile, flexural, and impact test of different array types of glass fiber (GF)/thermoplastic composites were performed to compare with GF array. Impregnation property between GF mat and thermoplastic was determined using computed tomography (CT). At CFT method, thermoplastic film is not wet into GF roving and many voids are appeared into composite. This phenomenon affects to decrease mechanical properties. Plain pattern GF mat was the best mechanical and impregnation properties that distance between two roving was set closely to $100{\mu}m$.

Formability of Thermoplastic Laminar Composite depending on the Types of- Fabric (Fabric 형태에 따른 열가소성수지 적층복합재료의 성형성)

  • Shin, Ick-Jae;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1338-1346
    • /
    • 2003
  • Three-dimensional formability of the thermoplastic laminar composite was studied according to manufacturing conditions. Five different types of the plain weave fabric were used as reinforcement with PET matrix. The square blank was made by press consolidation technique and formed in the type hemisphere. B-factor defined as the ratio of width of yarn and distance between yarns was used as the factor of formability in the type of plain weave fabric. The formability of PET/Glass fabric laminar composite was estimated in terms of forming rate and B-factor with the thickness distribution, area ratio of blank, and intra-ply shear angle. The thickness distribution across hemisphere was strongly affected by the B-factor, forming rate and blank thickness. The area ratio of blank was increased with B-factor, forming rate and blank thickness. Also, it was found that the intra-ply shear angle depends on the B-factor and forming rate.