• Title/Summary/Keyword: 유리섬유강화복합재료

Search Result 183, Processing Time 0.022 seconds

Optimal Manufacturing Conditions of Glass Fiber Reinforced PET Matrix Composites by Rapid Press Consolidation Technique (고속압밀법에 의해 제작된 유리섬유강화 PET 기지 복합재료의 최적제작조건)

  • Lee, Dong-Ju;Sin, Ik-Jae;Kim, Hong-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.813-821
    • /
    • 2002
  • Glass fiber reinforced PET matrix composite was manufactured by rapid press consolidation technique as functions of temperature, pressure and time in pre-heating, consolidation and solidification stages. The optimal manufacturing conditions for this composite were discussed based on the void content, tensile, interlaminar shear and impact properties. In addition, the levels of crystallinity with various manufacturing conditions were measured using differential scanning calorimetry to investigate the mechanical properties of this composite material as a function of crystallinity. Among many processing parameters, the mold temperature and the cooling rate after forming were found to be the most critical factors in determining the level of crystallinity and mechanical properties. The level of crystallinity affects the tensile properties to some degree. However, impact properties are affected much more. It also affects the degree of ductility, which determines the impact energy of this material.

Analysis on fatigue life distribution of composite materials (복합재료 피로 수명 분포에 관한 고찰)

  • 황운봉;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.790-805
    • /
    • 1988
  • Static strength and fatigue life scattering of glass fiber reinforced epoxy composite materials has been studied. Normal, lognormal, two-parameter and three-parameter Weibull distribution functions are used for strength and one-stress fatigue life distribution. The value of mean fatigue life is analysed using mean fatigue life, mean log fatigue life and expected value of 2 and 3-parameter Weibull distribution functions. Modification on non-statistical cumulative damage models is made in order to interpret the result of two-stress level fatigue life scattering. The comparison results show that 3-parameter Weibull distribution has better predictions in static strength and one-stress level fatigue life distributions. However, no advantage of 3-parameter Weibll distribution is found over 2-parameter Weibull distribution in two-stress level fatigue life predictions. It is found that two-stress level fatigue life prediction by the expanded equal rank assumption is close to the experimental data.

Durability Test on E-Glass Fiber Reinforced Composites of Strand Type in Specific Environment (스트란드형 유리섬유 강화 복합재료의 특수환경에 대한 내구성 시험)

  • Lee Seong-Ryul;Kim By-An;Moon Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.52-58
    • /
    • 2006
  • The effect of various environmental conditions on the durability of E-glass fiber/vinylester resin composites have been investigated using the tensile test specimen of strand type. It was found that the durability test method performed by the stand type specimen was more convenient and reliable than other conventional test method. The weight gains increased with the immersion time in both water and alkaline solution, and the Weight gains at $50^{\circ}C$. were much bigger than those at $20^{\circ}C$ in both conditions. The tensile strength decreased with the pass of immersion time in all aqueous solution, and the tensile strength at $80^{\circ}C$ in alkaline solution decreased very steeply at beginning of immersion time. The decrement of tensile strength according to the immersion time in various environmental conditions was mainly caused by the degradation of interface and the damage of glass fiber surface.

Experimental examination for effect of voids on bonding performance in cryogenic temperature condition (내부 기공이 극저온에서 접착강도에 미치는 영향에 대한 실험적 고찰)

  • Shon, Min-Young;Kim, Jong-Ho;Kim, Jong-Hak
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.14-17
    • /
    • 2009
  • Adhesive joints are widely used for structural joining applications in various fields and environmental conditions. Polyurethane adhesive is using for LNG carrier with cryogenic temperature condition. In industrial application of polyurethane adhesive, void of adhesive layer is often discussed regarding its effects on bonding properties. In present study, artificial void were prepared on Polyurethane adhesive layer with various size and location. The single lap shear test was carried out by using prepared specimens under $-170^{\circ}C$. As a result, it was confirm that the void of adhesive layer didn't affect the adhesion properties independent of their size and location.

Electromagnetic Interference Shielding Effect of Fiber Reinforced Composites with Stainless Fiber Conductive Filler (스테인레스 섬유를 충전제로 사용한 섬유강화 복합재료의 전자파 차폐 효과)

  • Han, Gil-Young;Song, Dong-Han;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.71-78
    • /
    • 2010
  • The objective of this research is to investigate the influence of material characteristic and design on to the electromagnetic interference (EMI) shielding characteristics. Basalt glass fiber reinforced composite specimens with stainless fiber conductive filler were manufactured to perform the electromagnetic interference shielding effectiveness(SE) experiments. In order to reflection and absorb the specimen in electromagnetic fields, flanged coaxial transmission line sample holder was fabricated according to ASTM D 4935-89. Electromagnetic shielding effectiveness(EMSE) was measured quantitatively to examine the electromagnetic shielding characteristics of designed specimens. The result of EMI shielding experiments showed that maximum EMSE value of sandwich type specimens with GSG(basalt glass fiber/stainless fiber/basalt glass fiber) and SGS(stainless fiber/basalt glass fiber/stainless fiber) were 65dB and 80dB at a frequency of 1,500MHz, respectively.

Structural Safety Analysis of a Spherical Flight Simulator Designed with a GFRP-Foam Sandwich Composite (GFRP-폼 샌드위치 복합재료로 설계된 구체 비행 시뮬레이터의 구조 안정성 평가)

  • Hong, Chae-Young;Ji, Wooseok
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.279-283
    • /
    • 2019
  • A flight training simulator of a fully spherical configuration is being developed to precisely and quickly control six degrees of freedom (Dof) motions especially with unlimited rotations. The full-scale simulator should be designed with a lightweight material to reduce inertial effects for fast and stable feedback controls while no structural failure is ensured during operations. In this study, a sandwich composite consisting of glass fiber reinforced plastics and a foam core is used to obtain high specific strengths and specific stiffnesses. T-type stainless steel frames are inserted to minimize the deformation of the sphere curvature. Finite element analysis is carried out to evaluate structural safety of the simulator composed of the sandwich sphere and steel frames. The analysis considers the weights of the equipment and trainee and it is assumed to be 200 kg. Gravity acceleration is also considered. The stresses and displacement acting on the simulator are calculated and the safety is assessed under two different situations.

A study on the orthogonal cutting characteristics of glass fiber reinforced plastics (복합재료의 직교 절삭가공 특성에 관한 연구)

  • 송화용;정용운;김준현;김주현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.155-160
    • /
    • 2001
  • In the use of glass fiber reinforced plastics(GFRP) it is often necessary to cut the components, but the cutting of GFRP is often made difficult by the delamination of the compositions and short tool life. Experimental investigation was conducted to evaluate the chip formation of the glass fiber reinforced plastics during orthogonal cutting. The chip formation process, cutting force, and thrust force were studied. The chip formation processes were studied through the use of quick-stop device. Chip-tool contact areas were obtained with the use of the quick-stop device, and observed using optical microscopy after polishing. Cutting force and thrust force were measured through the use of the tool dynamometer.

  • PDF

The Spring-back Phenomena in Soild Phase Bending of Glass Fiber Reinforced Polypropylene (유리섬유 강화 Polypropylene의 고상굽힘성형시 Spring-back 현상)

  • 남궁천;김성일;이중희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.646-649
    • /
    • 1995
  • An experimental and analyical investigations were undertaken to improve understanding of spring-back phenomena of chopped fiber reinforced thermoplastic composite sheet. The materials tested contained 20, 35, 40 percent by weight of readomly oriented glass fiber in a prolypropylene matrix. The simple bending tests were performed at temperatures ranging form 75 .deg. c to 150 .deg. c with 25 .deg. c increment and at punch speed of 1mm/sec and 0.01mm/sec. The spring-back angel measured in pure bending is compared with the prediction base on the analytical model. Good agreement between experimental and predicted results was observed.

  • PDF

Characteristics of Wear on Sliding Speed of Glass Fiber Reinforcement Composites (유리섬유강화 복합재료의 미끄럼 속도변화에 따른 마모 특성)

  • Kim, Hyung Jin;Koh, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.3
    • /
    • pp.277-283
    • /
    • 2012
  • The characteristics of abrasive wear on sliding speed of glass fiber reinforcement (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and surface roughness of these materials on sliding speed were determined experimentally. The major failure mechanisms were lapping layers, deformation of resin, ploughing, delamination, and cracking by scanning electric microscopy (SEM) photograph of the tested surface. As increasing the sliding speed the GF/PUR composites indicated higher friction coefficient. The surface roughness of the GF/PUR composites was increased as the sliding speed was higher in wear test.

The Cutting Characteristics of the GFRP by Processing methods (가공방법에 따른 GFRP의 절삭특성)

  • 박종남;정성택;이승철;조규재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1764-1767
    • /
    • 2003
  • It is widely used in composite materials like several mechanical parts. aerospace industries. internal and structural materials of cars, building structures. ship materials and sporting goods. but it is insufficient to apply in field of mechanical processing. Therefore. GFRP which is possible to use in industrial field was examined about cutting force. tool wear condition of cutting, chip shape. surface roughness and inlet or outlet shape of processing parts with changing cutting condition and using HSS drill which is in vertical machining center in this paper.

  • PDF