• Title/Summary/Keyword: 유리강화플라스틱

Search Result 114, Processing Time 0.019 seconds

Mechanical Properties Anisotropy of Plain Weave Glass Fabric Reinforced Epoxy Resin Laminates (평직유리섬유강화 에폭시 적층판의 기계적 특성 이방성)

  • Kim, Yon-Jig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • The anisotropic mechanical properties were measured for the three orthogonal orientations of plain weave glass fabric reinforced epoxy resin laminate. In tensile and flexural tests, axial and edge type specimens failed by pull-out of warp and fill yarns, respectively. In contrast, the thickness type specimens failed by adhesive failure process. Longitudinal cracking occurred in several of the edge type specimens during tensile test. That cracking caused pop-in in the stress-strain curve. Defects induced by improper coupon machining caused that cracking.

fiber Orientation Effects on the Acoustic Emission Characteristics of Class fiber-Reinforced Composite Materials (유리섬유강화 복합재의 AR특성에 대한 섬유배향 효과)

  • Kim, Jung-Hyun;Woo, Sung-Choong;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.429-438
    • /
    • 2003
  • The effects of fiber orientation on acoustic emission(AE) characteristics have been studied for the unidirectional and satin-weave, continuous glass-fiber reinforced plastic(UD-GFRP and SW-GFRP) tensile specimens. Reflection and transmission optical microscopy was used for investigation of the damage zone of specimens. AE signals were classified as different types by using short time fourier transform(STFT) : AE signals with high intensity and high frequency band were due to fiber fracture, while weak AE signals with low frequency band were due to matrix and interfacial cracking. The feature in the rate of hit-events having high amplitudes showed a process of fiber breakages, which expressed the characteristic fracture processes of individual fiber-reinforced plastics with different fiber orientations and with different notching directions. As a consequence, the fracture behavior of the continuous GFRP could be monitored as nondestructive evaluation(NDE) through the AE technique.

The Influence of Mechanical Properties with the Number of Recycling of Fiber-reinforced Thermoplastic Composites Damaged by Impact (충격에 의해 손상된 섬유강화 열가소성 수지 복합재료의 재활용 횟수에 따른 물성의 변화)

  • Bae, Kwak Jin;Lee, Joon Seok
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.75-79
    • /
    • 2022
  • In this study, the effect of mechanical and chemical properties of glass fiber reinforced thermoplastic (GFRTPs) according to the number of recycling was confirmed. The composite materials were manufactured through a hot press compression molding process using an E-glass chopped strand mat and a polypropylene film. Four specimens were named according to the number of recycled test repeat: First manufacture, 1st Recycle, 2nd Recycle, and 3rd Recycle. To investigate the mechanical properties of the prepared specimen, tensile test, flexural test, drop-weight impact test, differential scanning calorimetry (DSC), and field emission electron gun-scanning electron microscope (FE-SEM) was performed. As a result, as the number of recycling steps repeat, the degree of crystallization, tensile strength, elastic modulus, and flexural strength were increased, but the impact properties were greatly reduced.

Stiffness Comparison with Design of GFRP Roof Panels Prepared by RTM Method (RTM 성형 GFRP 차체 설계에 따른 강성연구)

  • 유용문;윤의박;윤여성;이순홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.32-38
    • /
    • 1998
  • In order to investigate the relationship between the stiffness and structure of the automotive roof panels, two kinds of glass fiber reinforced plastic(GFRP) roof panels without and with insert material were fabricated by resin transfer molding(RTM) method. The stiffness test was performed at the same condition as it of actual driving. The structural design and material selection for improving the recyclability of GFRP roof panels were also covered.

  • PDF

Strength Characteristics and Non-Destructive Evaluation of Composites with Heat Damage (국부열손상을 받은 복합재료의 강도특성 및 비파괴평가)

  • Nam, Ki-Woo;Kim, Young-Un
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.173-178
    • /
    • 2002
  • Fourier transform has been one of the most common tools to study the frequency characteristics of signals. With the Fourier transform alone, it is difficult to tell whether signal's frequency contents evolve in time or not. Except for a few special cases, the frequency contents of most signals encountered in the real world change with time. Time-frequency methods are developed recently to overcome the drawbacks of Fourier transform, which can represent the information of signals in time and frequency at the same time. In this study, heat damage process of a carbon fiber reinforced plastic(CFRP) and glass fiber reinforced plastic(GFRP) under monotonic tensile loading was characterized by acoustic emission. Different kinds of specimens were used to determine the characteristics of Strength and AE signals. Time-frequency analysis methods were employed for the analysis of fracture mechanism in CFRP such as matrix cracking, debonding and fiber fracture.

  • PDF

A Study on the Structural Design of Effective Composite Joint and Light Weight in Body Floor (Body Floor의 복합재 접합방식 및 경량화 설계에 관한 연구)

  • Kim, Hong Gun;Oh, Sang Yeob;Kim, Kwang Choul;Kim, Hyun Woo;Kwac, Lee Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.920-925
    • /
    • 2012
  • A study of vehicle weight lightening has been progressed to reduce the fuel consumption. In this paper, the body floor in an EV (Electric Vehicle) bus has been applied by composites as CFRP and GFRP. In order to analyse a various reliability and safety, an experiment and FEM analysis was carried out to obtain weight lightening. Especially, the joint. An effective design is obtained through an experiment as well as FEM analysis. Results of stress analysis of GFRP material showed twice as much displacement than those of CFRP material. Among three kinds of joint methods, the bond joint method is occurred to a substantial shape change in the body and floor. It is found that the rivet joints are fairly suitable for stress sustaining capability.

Development of high speed coupling for 2MW class wind turbine (2MW급 대형 풍력발전기용 고속커플링 개발)

  • Son, Seung Deok;Lee, Hyoung Woo;Han, Jeong Young;Kim, Yong Won;Kang, Jong Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.262-268
    • /
    • 2014
  • This research introduces the structural design and the validation results of the flexible high speed coupling for 2MW class wind turbine which transmit and cut off torque between gear box and generator. The high speed coupling requires electrical insulation to prevent electrical surface damages on gear box. Therefore glass fiber reinforced plastics is applied to absorb the vibration and deformation of power train and to transmit required torque. Finite element analysis was performed to optimize the thickness and accumulation number of glass fiber reinforced plastics. Torque limiter which cut off the abnormal torque is designed in frictional disc type. The design of the coupling was validated with the performance test of prototype.

Exposure to Styrene in the Lamination Processes with Fiberglass-Reinforced Plastics: Health Diagnosis Case Report (유리섬유강화 플라스틱을 이용한 적층공정 근로자들의 스티렌 노출 평가: 보건진단 사례)

  • Choi, Sangjun;Jeong, Yeonhee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.126-133
    • /
    • 2015
  • 연구목적: 이 연구는 노동부의 보건진단 명령에 의해 유리섬유 강화플라스틱(FRP)을 이용한 이중벽 탱크 제조 사업장의 적층 공정 근로자들을 대상으로 스티렌 노출 특성을 평가하기 위해 수행되었다. 연구방법: 스티렌의 주요발생원 파악을 위해 불포화 폴리에스테르 수지(UPR), 경화제, 조색제, 세척액 등의 원료 내 스티렌 함유량을 가스크로마토그래피 질량분석기(GC-MS)를 이용하여 분석하였다. FRP 적층 공정에 근무하는 작업자들을 대상으로 NIOSH 1501 공정시험법에 의해 공기 중 스티렌 노출 농도에 대한 개인노출 평가를 실시하였고, 생물학적 노출 지표로 뇨 중 만델릭산을 채취한 후 고성능액체크로마토그래피(HPLC)로 분석하였다. 또한 각 직무 특성과 단위작업 중심으로 스티렌에 대한 단시간 노출평가를 수행하였다. 연구결과: 스티렌의 함유량이 가장 많은 주요 원료는 중량비율로37%의 스티렌이 함유된 UPR이었다. 적층 공정의 FRP분무 작업자와 보조 작업자들 모두 스티렌의 8시간 가중평균 노출기준(20 ppm)을 초과하였다. 단시간 노출평가 결과 FRP분무 작업자의 경우 45.9 ppm에서 86.1 ppm 수준으로 FRP를 사용하지 않는 작업보다 통계적으로 유의하게 높은 수준이었다(P<0.01). 가장 높은 수준의 스티렌에 노출되는 단위작업은 FRP를 이용하여 1차 코팅 하는 작업으로 특별한 관리가 필요하였다. 결론: 보건진단을 위해 실시한 이중벽 탱크 제조 사업장의FRP 적층 공정 작업자의 스티렌 노출수준은 노출기준을 초과할 정도로 높은 수준이었다. 그러나 탱크를 천장에 매달고 돌리면서 적층작업을 수행하기 때문에 적절한 국소환기 시스템을 구축하는데 어려움이 있다. 따라서 적절한 방독마스크 착용으로 스티렌 노출 예방이 필요하였다.

Failure Analysis of the Rate of Rise Spot Type Heat Detector on Artificially Accelerated Aging (인공 가속열화에 따른 차동식 스포트형 열감지기의 고장 원인분석)

  • Kim, Chan-Young
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.48-55
    • /
    • 2011
  • This paper presents the failure analysis of the rate of rise spot type heat detectors on artificially accelerated aging. The failures of heat detector turned out by two reasons. The first one is the separation of binder from plastic moulding, resulting in the leakage of air from heat chamber. The second reason is the crack of plastic. The large cracks were maybe created by these reasons, thermal expansion difference, mechanical stress, or growth of microcrack. In the sound detector, the separation and the crack were not occurred or not developed to the critical size. The glass fibers which increase the mechanical strength were added in the binder of detector 2010G. The densities of binder or plastic of each detector were similar. However, the TGA result shows that the thermal characteristics of 2005A and 2005B were not similar.

A Study on Properties of the Glass Fiber Reinforced PPS Composites for Automotive Headlight Source Module (자동차 전조등 광원 모듈용 유리섬유강화 PPS 복합재료 특성 연구)

  • Heo, Kwang-Yeol;Park, Sung-Min;Lee, Eun-Soo;Kim, Myung-Soon;Sim, Ji-Hyun;Bae, Jin-Seok
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.293-298
    • /
    • 2016
  • In this paper, Glass Fiber Reinforced Thermoplastic (GFRTP) for automotive headlight source module was fabricated by compounding and injection molding using PPS (Poly Phenylene Sulfide) resin with glass fiber which has three cross section (round type, cocoon type, flat type). Tensile, flexural, impact properties were investigated on effect of cross section, glass fiber contents. And it was observed flatness, dimensional stability, fluidity depending on glass fiber cross section. As a result, flat glass fiber reinforced thermoplastic's mechanical properties were most excellent. Also, dimensional stability and flatness showed better results when using flat glass fiber.