• Title/Summary/Keyword: 유도 임펠러

Search Result 34, Processing Time 0.022 seconds

A Study on the Flow Characteristics in a Torque Converter (토크 컨버터 유동특성에 대한 연구)

  • Yoo, S.C.;Jang, S.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.20-26
    • /
    • 2008
  • 양산되는 승용차용 토크 컨버터 내부의 유동을 LDV 측정 기술을 이용하여 정량화했다. 속도비 0.4와 0.8 경우에 대한 속도 측정을 통해 임펠러 유로 중간과 출구 영역의 질량 유동율 특성을 분석했다. 측정 단면의 속도 분포는 유로의 위치와 속도비에 따라 많은 차이를 보이며, 특히 속도비 0.8 조건에서 임펠러 유로 중간영역 흡입면 부근의 유동은 유동박리에 의한 재순환 현상을 나타내며, 이와는 대조적으로 출구 영역에서는 흡입면을 따라 역류 현상이 발생한다. 임펠러 유로 내부의 유동은 각 영역에서 속도비에 따라 개별적 유동 특성을 보인다. 질량 유동율은 모든 속도비와 측정단면에서 주기적인 변화를 보이며, 또한 터빈의 순간적인 위치가 임펠러 유로 측정단면의 질랑 유동율에 매우 큰 영향을 미치는 것이 밝혀졌다 따라서 토크 컨버터 임펠러의 유로 방향 유동 특성 변화는 컨버터 설계에 중요하게 고려되어야 할 것으로 보인다.

  • PDF

A Study on Unsteady Flow Characteristics in Industrial Mixers with Various Types Impeller by PIV (PIV에 의한 교반기내의 산업용 임펠러형태에 따를 비정상 유동특성에 관한연구)

  • Nam, Koo-Man;Kim, Beom-Seok;Kim, Jeong-Hwan;Kang, Mun-Hu;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.678-683
    • /
    • 2003
  • Mixers are used in various industrial fields where it is necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematic investigated. The present study aimed to clarify unsteady flow characteristics induced by various impellers in a tank. Impellers are pitched blade turbine and neo-hydrofoil turbine types. A high speed CCD camera and an Ar-Ion laser for illumination were adopted to clarify the time-dependent flow characteristics of the mixers. The rotating speed of impellers increased from 6Hz to 60Hz by 6Hz. The maximum velocity around PBT impeller is higher than the hydrofoil type impeller. These two types of turbine shows that typical flow characteristics of axial turbine and suitable for mixing high -viscosity materials.

  • PDF

Flow field simulation and structural optimization design of cyclone separator based on Fluent (플루언트(Fluent) 기반의 사이클론 분리기의 유동장 시뮬레이션 및 구조 최적화 설계)

  • Gu Haiqin;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.5
    • /
    • pp.73-85
    • /
    • 2024
  • In recent years, China has been committed to promoting energy-saving and emission-reduction measures across various industries. In the steel production process, wet dust removal technology is widely adopted. However, the existing dust removal equipment, particularly the cyclone separator, suffers from insufficient dewatering efficiency, leading to a "rain" phenomenon during waste gas emission, which in turn causes secondary environmental pollution. The design of the guide vane wheel is crucial for enhancing the dewatering efficiency of the cyclone separator. Therefore, this study, based on fluid mechanics and flow field analysis theories, utilizes the FLUENT software to simulate and analyze the blade angle and flow area of the guide vane wheel. By combining the flow field analysis and simulation results with the specific parameters of the equipment, the structure of the cyclone separator's guide vanes was optimized and applied to actual production. Practice has proven that the optimized cyclone separator significantly improved dewatering efficiency and effectively reduced the rain phenomenon around the chimney, thereby enhancing environmental quality. The research of this project is conducive to the later application of artificial intelligence, the Internet of Things, big data, cloud computing, and other technologies in the 5G+ smart steel factory of the steel industry. It lays the foundation for using digital twin technology to carry out 3D modeling of the plant area, in order to facilitate the reappearance and simulation of the entire production process.

A Numerical Study on Mixing of Liquid Fuel and Solid Particles in a Fuel Tank (연료탱크내 액체연료와 고체입자의 혼합 수치해석 연구)

  • Kim, Myung-Ho;Ryu, Gyong-Won;Min, Seong-Ki;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.745-749
    • /
    • 2011
  • Two-dimemsional liquid-solid multiphase fluid dynamics was used to analyze the suspension and mix of liquid fuel and solid particles in fuel tank installed mixing impeller. In this paper, the multiphase flow was modeled using Eulerian Grandular Multiphase model. Experimental measurements of the axial distribution of solids concentration in stirred tanks under 12vol% solid loading were used for comparison with the CFD simulation. Four cases for the impeller location and flow pumping direction also were reviewed under 10.5% solids loading and 700rpm in fuel mix tank. The result of quality of suspension was compared with each cases and the impeller location and operation of mixing fuel tank was established.

  • PDF

SMART 냉각재순환펌프 개념설계

  • Park, Jin-Seok;Heo, Hyeong;Kim, Jong-In;Kim, Ji-Ho;Koo, Dae-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.885-890
    • /
    • 1998
  • SMART 냉각재순환펌프는 수직형 축류펌프로 분류되며 작동되는 환경의 특성상 캔드모터 펌프로 설계하였다. 냉각재순환점프의 전체 구조에 대한 개념설계를 수행하였으며 펌프의 주요부품인 회전측 집합체, 베어링 집합체, 전동기를 설계하였다. 베어링의 구조와 형상설계를 수행하였고 전동기는 농형유도 전동기로 설계하였으며 회전자의 슬롯에 대한 상세설계와 고정자의 슬롯에 대한 상세설계를 수행하였다. 앞으로 회전축의 동특성 해석, 임펠러의 캐비테이션 시험, 베어링의 내구성 시험, 펌프몸체의 응력해석을 수행할 예정이다.

  • PDF

Analysis of Performance Characteristics by Inner Flow Path of Side Channel Type Ring Blower (사이드 채널형 링블로워의 임펠러 내부 유로에 따른 성능변화 분석)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Jeong, Kyung-Ho;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.67-71
    • /
    • 2012
  • This study analyzed performance changes by an inner flow path of impeller groove for side channel type ring blower using CFD. Two models have the same side channel and clearance while one has an inner flow path and the other doesn't. To analyze the performance change of a ring blower, overall performance and local flow field were analyzed. For the overall performance, pressure increase and impeller torque were checked under the design flow condition. Under the design flow condition, pressure increase was greater for the model with the inner flow path. The model with the inner flow path showed improved efficiency because the area subject to torque decreased due to the creation of inner flow path. To analyze local flow field, a section was created from the representative location of each impeller groove toward the direction of radius. Inner channel pressure distribution depending on the rotation direction shows that the model with the inner flow path has pressure equilibrium of working fluid through the inner flow path. Velocity distribution of inside impeller groove shows that flow field was coupled and appeared to form an inner wall where the flow field was stabilized.

A Study on Unsteady Flow Characteristics in a Industrial Mixer with Hydrofoil Types Impeller by PIV (PIV에 의한 산업용 교반기내 Hydrofoil 임펠러 형태에 따른 비정상 유동특성에 관한 연구)

  • Kim, Beom-Seok;Kim, Jeong-Hwan;Kang, Mun-Hu;Kim, Jin-Gu;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.863-868
    • /
    • 2003
  • Mixers are used in various industrial fields where it is necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematic investigated. The present study aimed to clarify unsteady flow characteristics induced by various impellers in a tank. Impellers arc hydrofoil turbine and neo-hydrofoil turbine types. A high speed CCD camera and an Ar-Ion laser for illumination were adopted to clarify the time-dependent flow characteristics of the mixers. The rotating speed of impellers increased from 6Hz to 60Hz by 6Hz, The maximum velocity around neo-hydrofoil impeller is higher than the hydrofoil type impeller. These two types of turbine shows that typical flow characteristics of axial turbine and suitable for mixing high-viscosity materials.

  • PDF

Internal Flow Measurement of Very Low Specific Speed Semi-Open Impeller by PIV (PIV를 이용한 극저비속도 세미오픈임펠러의 내부유동 계측)

  • Nishino Koichi;Lee Young-Ho;Choi Young-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.773-783
    • /
    • 2005
  • Internal flow measurement of very low specific-speed semi-open impellers has been carried out by PIV in order to understand better the internal flow patterns that are responsible fur the unique performance of these centrifugal pumps operating in the range of very low specific speed. Two types of impellers, one equipped with six radial blades (Impeller A) and the other with four conventional backward-swept blades (Impeller B), are tested in a centrifugal pump operating at a non-dimensional specific-speed of $n_s=0.24$. Complex flow patterns captured by PIV are discussed in conjunction with the overall pump performance measured separately. It is revealed that Impeller A achieves higher effective head than Impeller B even though the flow patterns in Impeller A are more complex, exhibiting secondary flows and reverse flows in the impeller passage. It is shown that both the localized strong outward flow at the pressure side of each blade outlet and the strong outward through-flow along the suction side of each blade are responsible for the better head performance of Impeller A.

Flow Characteristics Analysis of the Decontamination Device with Mixing and Diffusion Using Radio-Isotopes Tracer (방사성 동위원소를 이용한 제염제 혼합확산장치의 유동특성분석)

  • Oh, Daemin;Kang, Sungwon;Kim, Youngsug;Jung, Sunghee;Moon, Jinho;Park, Jangguen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.282-287
    • /
    • 2017
  • The purpose of this study was predicted the effects of mixing and diffusion due to the operation of the apparatus before the development of the mixed diffusion device for the decontamination absorbent to minimize the influence of contaminant inflow due to radiation accident. The tracer used for the flow characteristics was $^{68}Ga$, $^{99m}Tc$, which is a radioactive isotope, and 2 inch NaI radiation detector was used to detect it. The impeller of the decontamination mixed diffusion system applied to this study was made into three types and the mixing diffusion effect was compared. As a result of analyzing the flow characteristics of the radio-isotope with decontamination mixed diffusion device, mixing, diffusion and flow pattern were obtained. The radial mixing type impeller was able to diffuse to the water surface by the upflow flow, and the fin structure was adjusted for finding optimal conditions. The model 3 type consists of a fin guiding part and an auxiliary fin so that the diffusion speed is higher than that of other types of impellers. It also showed a short time to reach complete mixing.

Upgrade Development of a Centrifugal Compressor for Marine Engine Turbochargers (선박용 터보차져 원심압축기의 성능향상 개발)

  • Oh, Jong Sik;Oh, Koon Sup;Yoo, Kwang Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.43-50
    • /
    • 2000
  • Upgrade development of a high pressure ratio centrifugal compressor in marine engine turbochargers is presented. A new matched operating point at increased speed of rotation was determined through system cycle analysis using the exisitng test data of turbine performance. Under some severe restrictions for geometric parameters, the state-of-the-art methods of both aerodynamic design and CFD analysis were applied, in which only an impeller, a vaned diffusor and some part of casing wall were modified. Prototype hardware was fabricated and assembled for system performance tests. Excellent performance in pressure ratio and efficiency was obtained over whole speed region. Reduced surge and choke margin was, however, observed at design speed of rotation.

  • PDF