• Title/Summary/Keyword: 유닛조합

Search Result 33, Processing Time 0.021 seconds

Development of Dispenser System with Electrohydrodynamic and Voice Coil Motor for White Light Emitting Diode (백색 LED 제조를 위한 정전기력과 보이스코일모터를 이용한 디스펜서 시스템 개발)

  • Kang, Dong-Seong;Kim, Ki-Beom;Ha, Seok-Jae;Cho, Myeong-Woo;Lee, Woo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6925-6931
    • /
    • 2015
  • LED(Light Emitting Diode) is used in various filed like a display because of low power consuming, long life span, high brightness, rapid response time and environmental-friendly characteristic. General fabrication method is combination blue light LED chip with yellow fluorescent substance. Because this way is suitable for industry field in terms of convenience, economic, efficiency. In white light LED packaging process, encapsulation process that is dispensing fluorescent substance with silicon to blue light LED chip is most important. So, in this paper we develop EHD pump system using voice coil motor and electrostatic pump for dispensing fluorescent substance. For these things we conduct basic test about liquid surface profiles by voltage and process time. Through this data we decide optimal process condition and verify the optimal condition using design of experiment method. And to confirm uniformity of the condition, we conduct repeat dispensing test.

Development of Marker-free TaGlu-Ax1 Transgenic Rice Harboring a Wheat High-molecular-weight Glutenin Subunit (HMW-GS) Protein (벼에서 밀 고분자 글루테닌 단백질(TaGlu-Ax1) 발현을 통하여 쌀가루 가공적성 증진을 위한 마커프리(marker-free) 형질전환 벼의 개발)

  • Jeong, Namhee;Jeon, Seung-Ho;Kim, Dool-Yi;Lee, Choonseok;Ok, Hyun-Choong;Park, Ki-Do;Hong, Ha-Cheol;Lee, Seung-Sik;Moon, Jung-Kyung;Park, Soo-Kwon
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1121-1129
    • /
    • 2016
  • High-molecular-weight glutenin subunits (HMW-GSs) are extremely important determinants of the functional properties of wheat dough. Transgenic rice plants containing a wheat TaGlu-Ax1 gene encoding a HMG-GS were produced from the Korean wheat cultivar ‘Jokyeong’ and used to enhance the bread-making quality of rice dough using the Agrobacterium-mediated co-transformation method. Two expression cassettes with separate DNA fragments containing only TaGlu-Ax1 and hygromycin phosphotransferase II (HPTII) resistance genes were introduced separately into the Agrobacterium tumefaciens EHA105 strain for co-infection. Rice calli were infected with each EHA105 strain harboring TaGlu-Ax1 or HPTII at a 3:1 ratio of TaGlu-Ax1 and HPTII. Among 210 hygromycin-resistant T0 plants, 20 transgenic lines harboring both the TaGlu-Ax1 and HPTII genes in the rice genome were obtained. The integration of the TaGlu-Ax1 gene into the rice genome was reconfirmed by Southern blot analysis. The transcripts and proteins of the wheat TaGlu-Ax1 were stably expressed in rice T1 seeds. Finally, the marker-free plants harboring only the TaGlu-Ax1 gene were successfully screened in the T1 generation. There were no morphological differences between the wild-type and marker-free transgenic plants. The quality of only one HMW-GS (TaGlu-Ax1) was unsuitable for bread making using transgenic rice dough. Greater numbers and combinations of HMW and LMW-GSs and gliadins of wheat are required to further improve the processing qualities of rice dough. TaGlu-Ax1 marker-free transgenic plants could provide good materials to make transgenic rice with improved bread-making qualities.

Inter-ramet Physiological Integration Detected in Buffalograss(Buchloe dactyloides (Nutt.) Engelm.) under Water Stress (수분스트레스 하에 있는 버팔로그래스에서 검출된 무성생식체의 생리학적 조정)

  • Qian, Yongqiang;Li, Deying;Han, Lei;Ju, Guansheng;Liu, Junxiang;Wu, Juying;Sun, Zhenyuan
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.331-344
    • /
    • 2009
  • Buffalograss is an important turfgrass species with excellent cold, heat, and drought tolerance. Understanding the physiological integration of buffalograss under heterogeneous conditions helps to develop cultural practices that better use limited resources for uniform turf quality. The objective of this study was to evaluate physiological integration of buffalograss under water deficit stress and the involvement of lipid peroxidation and antioxidants in the process. In one experiment, buffalograss was planted in the center of a four-compartment growth unit. Watering frequencies, once a week(+) and once in two weeks(-), were combined with the sand(S) or peat(P) in each unit to generate five total treatments(P+S-P-S+, P+P+P+P+, S-S-S-S-, P-P-P-P-, and S+S+S+S+). The average number of shoot established from the heterogeneous root-zone medium was higher than the average of four possible homogeneous media. In second experiment, single ramet in Hoagland solution($S_0$) or single ramet in Hoagland solution with 20% PEG-6000($S_s$) were compared with two connectedramets under different treatments. Treatments for connected ramets were young ramet in Hoagland solution($Y_{os}$) and old ramet in Hoagland solution with 20% PEG-6000($O_{os}$), and old ramet in Hoagland solution($O_{ys}$) and young ramet in Hoagland solution with 20% PEG-6000($Y_{ys}$). Lipid peroxidation, antioxidants, and proline showedphysiological integration between ramets subjected to different levels of water stress. Superoxide dismutase(SOD), Guaiacol peroxidase(G-POD), malondialdehyde(MDA), and free proline also showed different time courses and relative activities during the physiological integration.