Inter-ramet Physiological Integration Detected in Buffalograss(Buchloe dactyloides (Nutt.) Engelm.) under Water Stress

수분스트레스 하에 있는 버팔로그래스에서 검출된 무성생식체의 생리학적 조정

  • Qian, Yongqiang (Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration) ;
  • Li, Deying (Department of Plant Sciences, North Dakota State University) ;
  • Han, Lei (Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration) ;
  • Ju, Guansheng (Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration) ;
  • Liu, Junxiang (Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration) ;
  • Wu, Juying (Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science) ;
  • Sun, Zhenyuan (Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration)
  • 뀐용퀴앙 (베이징 주임업국 임학연구소) ;
  • 이다이엥 (노스다코다대학교 식물학과) ;
  • 한레이 (베이징 주임업국 임학연구소) ;
  • 주관쉥 (베이징 주임업국 임학연구소) ;
  • 류준샹 (베이징 주임업국 임학연구소) ;
  • 위주잉 (베이징 농.임학아카데미 초지연구개발센터) ;
  • 선젠얀 (베이징 주임업국 임학연구소)
  • Received : 2009.09.30
  • Accepted : 2009.11.30
  • Published : 2009.12.31

Abstract

Buffalograss is an important turfgrass species with excellent cold, heat, and drought tolerance. Understanding the physiological integration of buffalograss under heterogeneous conditions helps to develop cultural practices that better use limited resources for uniform turf quality. The objective of this study was to evaluate physiological integration of buffalograss under water deficit stress and the involvement of lipid peroxidation and antioxidants in the process. In one experiment, buffalograss was planted in the center of a four-compartment growth unit. Watering frequencies, once a week(+) and once in two weeks(-), were combined with the sand(S) or peat(P) in each unit to generate five total treatments(P+S-P-S+, P+P+P+P+, S-S-S-S-, P-P-P-P-, and S+S+S+S+). The average number of shoot established from the heterogeneous root-zone medium was higher than the average of four possible homogeneous media. In second experiment, single ramet in Hoagland solution($S_0$) or single ramet in Hoagland solution with 20% PEG-6000($S_s$) were compared with two connectedramets under different treatments. Treatments for connected ramets were young ramet in Hoagland solution($Y_{os}$) and old ramet in Hoagland solution with 20% PEG-6000($O_{os}$), and old ramet in Hoagland solution($O_{ys}$) and young ramet in Hoagland solution with 20% PEG-6000($Y_{ys}$). Lipid peroxidation, antioxidants, and proline showedphysiological integration between ramets subjected to different levels of water stress. Superoxide dismutase(SOD), Guaiacol peroxidase(G-POD), malondialdehyde(MDA), and free proline also showed different time courses and relative activities during the physiological integration.

Buffalograss는 내한, 내서, 그리고 내한발에 우수한 주요 잔디 종 중 하나이다. 다양한 환경에서 buffalograss의 생리학적 조정(integration)을 이해하는 것은 균일한 잔디의 질을 도모하고 경종적 재배방법의 개발에 도움이 된다. 본 연구의 목적은 물 부족의 스트레스 처리에서의 buffalograss의 생리학적 조정과정에서 lipid peroxidation과 산화방지제의 연관성을 평가하였다. 한 실험에서 buffalograss는 네 개의 구분된 칸막이 성장 유닛의 중심에서 재배되었고, 일주일에 한번(+), 일주일에 두 번(-) 관수처리와 모래(S) 또는 피트(P)와를 혼합한 다섯 가지 토양 조합으로 처리하였다(P+S-P-S+, P+P+P+P+, S-S-S-S-, P-P-P-P-, and S+S+S+S+). 그 결과, 균일하게 혼합된 상토에서 생장한 줄기의 수가 네개의 단일 상토에 정착한 것보다 더 많았다. 두 번째 실험에서는 Hoagland 용액($S_o$), 또는 20% PEG-6000이 함유된 Hoagland용액($S_s$) 안에 하나의 라미트(무성생식체) 혹은 연결된 라마트를 다음과 같은 여러 가지 처리와 비교 실험하였다. 연결된 라미트들의 처리는 Hoagland 용액안의 어린 라미트($Y_{os}$)와 20%PEG-6000가 함유된 Hoagland 용액안의 성숙한 라미트($O_{os}$), Hoagland 용액 단독에 성숙한 라미트($O_{ys}$), 20%PEG-6000 함유된 Hoagland 용액안의 어린 라미트($Y_{ys}$)였다. Lipid peroxidation, antioxidants, proline은 각기 다른 수분 stress 정도에서 라미트들 간의 생리학적 활성을 보여 주었다. Superoxide dismutase (SOD), Guaiacol peroxidase (G-POD), malondi aldehyde (MDA), free proline의 활성도 처리 후 시간에 따라 상대적인 생리학적 활성을 보였다.

Keywords

References

  1. Alpert, P. and H.A. Mooney. 1986. Resource sharing among ramets in the clonal herb, Fragaria chiloensis. Oecologia 70:27-233
  2. Alpert, P., C. Holzapfel, and J.M. Benson. 2002. Hormonal modification of resource sharing in the clonal plant Fragaria chiloensis. Funct Ecol. 16:191-197 https://doi.org/10.1046/j.1365-2435.2002.00610.x
  3. Bates, L.S., R.P., and T. Waldren. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39:205-207 https://doi.org/10.1007/BF00018060
  4. Blee, E. 2002. Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 7:315-322 https://doi.org/10.1016/S1360-1385(02)02290-2
  5. Brian, W.2002. Clonal plants in a spatially heterogeneous environment: effects of integration on Serengeti grassland response to defoliation and urine-hits from grazing mammals. Plant Ecol. 159:15–22
  6. Delauney, A.J., and D.P.S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4:215-223 https://doi.org/10.1046/j.1365-313X.1993.04020215.x
  7. Doge, A. 1994. Herbicide action and effects on detoxication processes. p. 219-236. In P. Mullineaux and C. Foyer (ed.) Causes of photo-oxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, FL
  8. Foyer, C.H. 1993. Ascorbic acid. p. 31–58. In R.G. Alscher, and J.L. Hess (ed.) Antioxidants in higher plants. CRC Press, Boca Raton, FL
  9. Gee, H. 1972. Localization and uptake of $^{14}C-IAA$ in relation to xylem regeneration in coleus internodes. Planta (Berl.) 108:1-9 https://doi.org/10.1007/BF00386501
  10. Giannopolitis, C.N., and S.K. Ries. 1977. Superoxide dismutase I: Occurrence in higher plants. Plant Physiol. 59:309-314 https://doi.org/10.1104/pp.59.2.309
  11. Handa, S., A.K. Handa, P.M. Hasegawa, and R.A. Bressan. 1996. Proline accumulation and the adaptation of cultured plant cells to salinity stress. Plant Physiol. 80:938-945 https://doi.org/10.1104/pp.80.4.938
  12. Hare, P.D., S. Du Plessis, W.A. Cress, and J. Van Staden. 1996. Stress-induced changes in plant gene expression: Prospects for enhancing agricultural productivity in Southern Africa. S. Afr J Sci. 92:431-439
  13. Heath, R.L., L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys.125:189-198 https://doi.org/10.1016/0003-9861(68)90654-1
  14. Hellström, K., M. Kytöviita, J. Tuomi, and P. Rautio. 2006. Plasticity of clonal integration in the perennial herb Linaria vulgaris after damage. Funct.Ecol. 20:413–420
  15. Heuer, B. 1994. Osmoregulatory role of proline in water and salt stressed plants. p. 363–381. In M. Pessarakli (ed.) Handbook of Plant and Crop Stress. New York, USA:Marcel Dekker Inc
  16. Hutchings, M.J. 1999. Clonal plants as cooperative systems: benefits in heterogeneous environments. Plant Species Biol. 1:1-10 https://doi.org/10.1111/j.1438-8677.1999.tb00701.x
  17. Jiang, M., and J. Zhang. 2002. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 379:2401-2410
  18. Kaitaniemi, P., and T. Honkanen. 1996. Simulating source–sink control of carbon and nutrient translocation in a modular plant. Ecol. Model. 88:227–240
  19. Kroon, H., B. Fransen, W.A. Rheenen, A. Dijk, and R. Kreulen. 1996. High levels of inter-ramet water translocation in two rhizomatous Carex species, as quantified by deuterium labeling. Oecologia 106:73-84 https://doi.org/10.1007/BF00334409
  20. Liu, X., and B. Huang. 2002. Cytokinin effects on creeping bentgrass responses to heat stress II. Antioxidant enzyme activities and lipid peroxidation. Crop Sci. 42:466–472
  21. Marshall, C. 1990. Source-sink relations of interconnected ramets. p. 23–41. In J. van Groenendael, and H. de Kroon (ed.) Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague
  22. Marshall, C., and G. Anderson-Taylor. 1992. Mineral nutritional inter-relations amongst stolons and tiller ramets in Agrostis stolonifera L. New Phytol. 122:339– 347
  23. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 9:405-410
  24. Pitelka, L.F., and J.W. Ashmun. 1985. Physiology and integration of ramets in clonal plants. p. 399-435. In J.B.G. Jackson, L.W. Buss, and R.E. Cook (ed.) The Population Biology and Evolution of Clonal Organisms, Yale University Press, New Haven, Connecticut
  25. Potter, D.A. 2005. Prospects for managing destructive turfgrass insects without protective chemicals. ITSR 10:42-54
  26. Price, E.A.C., and M. J. Hutching. 1992. The causes and developmental effects of integration and independence between different parts of glechoma hedercea clones. Oikos. 63:376-386 https://doi.org/10.2307/3544963
  27. P$\"{u}$tter, J. 1974. Peroxidases. p. 685–690. In H.U. Bergmeyer, (ed.) Methods of Enzymatic Analysis. Academic Press, New York
  28. Qian, Y., Z. Sun, L. Han, and G. Ju. 2008. Physiological integration of photosynthates and changes of endogenous ABA and IAA in the connected ramets of Buchloe dactyloides (Nutt.) ‘texoka’ after supply of water-heterogeneity. p. 388. InOrganizing committee of 2008 IGC/IRC conference (ed.) Multifunctional grasslands in the changing world. GuangzhouPublishing House press, Guangzhou
  29. Schmid B., and F.A. Bazzaz. 1987. Clonal integration and population structure in perennials: effects of wavering rhizome connections. Ecol. 68:2016-2022 https://doi.org/10.2307/1939892
  30. Sergio, R. Roiloa, and R. Retuerto, 2007. Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions. Environ. Exp. Bot. 61:1–9 https://doi.org/10.1016/j.envexpbot.2007.02.006
  31. Stuefer, J.F., H.J. During,and H. de Kroon. 1994. High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. J. Ecol. 82:511–518
  32. Takahashi, M.A., and K. Asada. 1983. Superoxide anion permeability of phospholipids membranes and chloroplast thylakoids. Arch. Biochem. Biophys. 226:558-566 https://doi.org/10.1016/0003-9861(83)90325-9
  33. Welham, C., R. Turkington, and C. Sayre. 2002. Morphological plasticity of white clover (Trifolium repens L.) in response to spatial and temporal resource heterogeneity. Oecologia 130:231–238
  34. Xu. Q., and B. Huang. 2004. Antioxidant metabolism associated with summer leaf senescence and turf quality decline for creeping bentgrass. Crop Sci. 44:553-560 https://doi.org/10.2135/cropsci2004.0553
  35. Zhang, X., and R. E. Schmidt. 1999. Antioxidant response to hormone-containing product in Kentucky bluegrass subjected to drought. Crop Sci. 39:545–551