• 제목/요약/키워드: 유기랭킨 사이클

검색결과 96건 처리시간 0.021초

저등급 열원으로 구동되는 병렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성 (Exergy and Entransy Performance Characteristics of Cogeneration System in Parallel Circuit Using Low-Grade Heat Source)

  • 김경훈;김경진;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.77-85
    • /
    • 2021
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of an organic Rankine cycle (ORC) and an additional process heater in a parallel circuit. Special attention is paid to the effects of the source temperature, turbine inlet pressure, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrancy analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

이상유동 해석을 통한 브레이징 판형 응축기 설계 연구 (Design Study of a Brazed Plate Heat Exchanger Condenser Through Two-Phase Flow Analysis)

  • 황대중;오철;박상균;지재훈;방은신;이병길
    • 신재생에너지
    • /
    • 제18권2호
    • /
    • pp.73-81
    • /
    • 2022
  • This study was aimed at designing a condenser, as a component of the organic Rankine cycle system for ships. The condenser was manufactured through press molding to achieve a bent shape to enhance the heat transfer performance, considering the shape of the heat transfer plate used in a brazing plate heat exchanger. The heat transfer plate was made of copper-nickel alloy. The required heat transfer rate for the condenser was 110 kW, and the maximum number of layers was set as 25, considering the characteristics of high-temperature brazing. Computational fluid dynamics techniques were used to perform the thermal fluid analysis, based on the ANSYS CFX (v.18.1) commercial program. The heat transfer rate of the condenser was 4.96 kW for one layer (width and length of 0.224 and 0.7 m, respectively) of the heat transfer exchanger. The fin efficiency pertaining to the heat transfer plate was approximately 20%. The heat flow analysis for one layer of the heat exchanger plate indicated that the condenser with 25 layers of heat transfer plates could achieve a heat transfer rate of 110 kW.

R32를 이용한 100kW급 해양온도차발전용 반경류터빈의 설계 (Design of a 100kW-class radial inflow turbine for ocean thermal energy conversion using R32)

  • 김도엽;김유택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1101-1105
    • /
    • 2014
  • 해양온도차발전은 해양의 따뜻한 표층수와 차가운 심층수의 온도차를 발전에 이용하는 전도유망한 기술이다. 지속가능한 온도차를 이용하여 온실가스감축기술로서 활용할 수 있다는 장점을 가지는 반면, 시스템의 효율이 낮다는 단점을 가진다. 해양온도차발전의 낮은 시스템 효율을 개선하기 위해서는 성능이 우수한 터빈의 설계 및 개발기술의 확보가 필요하다. 이에 따라 본 연구에서는 R32를 이용한 100kW급 해양온도차발전용 반경류터빈을 설계하였으며, CFD 해석을 통해 설계한 터빈의 성능을 검증하였다. CFD 해석결과를 참고하여 설계한 반경류터빈의 형상을 수정하였으며 이러한 과정을 반복하여 설계요구조건에 적합한 해양온도차발전용 반경류터빈의 최종 형상을 도출하였다.

거대조류 바이오가스를 연료로 하는 고체산화물 연료전지를 이용한 삼중발전 (Trigeneration Based on Solid Oxide Fuel Cells Driven by Macroalgal Biogas)

  • ;유준
    • 청정기술
    • /
    • 제26권2호
    • /
    • pp.96-101
    • /
    • 2020
  • 이 논문에서는 3세대 바이오매스 중 거대조류, 즉 해조류 바이오매스로부터 유래된 바이오가스를 연료로 사용하여 열, 전력 및 수소를 생산하는 삼중발전의 타당성 평가를 수행하였다. 이를 위해 3 MW급 고체산화물 연료전지와 가스터빈, 그리고 유기 랭킨 사이클로 이루어진 상용 규모의 열, 전력 및 수소 생산공정을 공정모사기를 사용하여 설계, 모사하였고, 공정모사로 부터 얻은 열 및 물질 수지를 통해 각 단위조작 장치의 가격을 추정하고 경제성을 분석하였다. 수소를 생산하기 위해 고체산화물 연료전지의 설계를 수정하였는데, 연료전지 내 애프터-버너를 제거하고 수성-가스 전환 반응기를 추가하였다. 공정모사 결과 설계된 삼중발전 공정은 시간당 3.47톤의 건조 갈조류 원료로부터 생산된 2톤의 바이오가스를 이용하여 2.3 MW의 전력과 50 kg hr-1의 수소를 37%의 효율로 생산한다. 이 결과를 토대로 가장 현실적인 시나리오에 대해 경제적으로 평가하고 BESP (breakeven electricity selling price)를 계산하였는데, ¢10.45 kWh-1로 기존의 고정 발전 대비 동등 이상의 수준으로 나타났다.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.