• Title/Summary/Keyword: 위치추적 장치

Search Result 271, Processing Time 0.029 seconds

The Basic Position Tracking Technology of Power Connector Receptacle based on the Image Recognition (영상인식 기반 파워 컨넥터 리셉터클의 위치 확인을 위한 기초 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.309-314
    • /
    • 2017
  • Recently, the fields such as the service robot, the autonomous driving electric car, and the torpedo ladle cars operated autonomously to enhance the efficiency of management of the steel mill are receiving great attention. But development of automatic power supply that doesn't need human intervention be a problem. In this paper, a position tracking technology of power connector receptacle based on the computer vision is studied which can recognize and identify the position of the power connector receptacle, and finally its possibility is verified using OpenCV program.

Precision Time Synchronization System over Wireless Networks for TDOA-based Real Time Locating Systems (TDOA 기반의 실시간 위치 측정 시스템을 위한 정밀 무선 시각 동기 시스템)

  • Cho, Hyun-Tae;Jung, Yeon-Su;Jang, Hyun-Sung;Park, In-Gu;Baek, Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1B
    • /
    • pp.86-97
    • /
    • 2009
  • RTLS is a system for automatically locating and tracking people and objects. The TDOA-based RTLS determines the location of the tag by calculating the time differences of a signal received from the tag. In TDOA-based RTLS, time synchronization is essential to calculate the time difference between readers. This paper presents a precision time synchronization method for TDOA-based RTLS over IEEE 802.15.4. In order to achieve precision time synchronization in IEEE 802.15.4 radio, we analyzed the error factors of delay and jitter. We also deal with the implementation of hardware assisted time stamping and the Kalman filtering method to minimize the error factors. In addition, this paper described the experiments and performance evaluation of the proposed precision time synchronization method in IEEE 802.15.4 radio. The results show that the nodes in a network can maintain their clocks to within 10 nanoseconds offset from the reference clock.

Implementation of Ubiquitous Port Operation System Using RTLS (RTLS를 활용한 유비쿼터스 항만운영시스템 구축 방안)

  • Park, Doo-Jin;Choi, Young-Bok
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.128-135
    • /
    • 2006
  • RTLS(Real Time Location System) is the system to provide information and real-time location of tagged objects by using RTLS tag. In this paper, in order to enhance the performance of the port operation system, and efficient operation method of yard is suggested by applying RFID(Radio Frequency Identification)-based RTLS that provides real-time accurate positions of containers. In the group-based loading sequence system, the containers in the same group should have the similar characteristics such as POD(Port of Destination), size, weight, etc. In order to run this system, we propose the scheme using the parameters to the unspecified N bytes of RFID tag specified in ISO 18000-7. According to simulation result, the group-based system reduces the re-handling ratio of TC(Transfer Crane) in yard. It will reduce the whole lead-time in the process of port pogistics.

  • PDF

A Secure Yoking-Proof Protocol Providing Offline Verification (오프라인 검증을 지원하는 안전한 요킹증명 프로토콜)

  • Ham, Hyoungmin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.113-120
    • /
    • 2021
  • RFID (Radio Frequency Identification) yoking authentication provides methods scanning a pair of RFID tags with a reader device and verifying them to ensure the physical proximity of objects. In the first yoking proof protocols, a verifier connected to a reader device online is essential to verify the yoking proof, and this condition limits the environment in which yoking proof can be applied. To solve this limitation, several studies have been conducted on offline yoking proof protocol that does not require the online connection between a reader and a verifier. However, the offline yoking proof protocols do not guarantee the basic requirements of yoking proof, and require relatively more operations on the tag compared to the previous yoking proof protocols. This paper proposes an efficient offline yoking proof protocol that supports offline verification without the need for an online verifier. The proposed protocol provides a secure yoking proof with fewer number of operations than the existing ones, and it also can be extended to the group proof for more than a pair of tags without additional devices. The analysis in this paper shows that the proposed protocol provides offline verification securely and effectively.

Bicycle Accident Position Tracing and Alarm System (자전거 사고 위치 추적 및 알림 시스템)

  • Kim, Jang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.93-98
    • /
    • 2014
  • Bicycle accidents increase as the number of people riding bicycles increases following the trend try to enhance health and looking for alternative energy sources in the era of high oil price. In bicycle accident cases, physical risk is higher because the impact of the accident has a direct effect on the body of the rider. Therefore, the bicycle rider in an accident might unable to report the accident by themselves, thus, unable to quickly respond to the accident situation. This study developed a system for informing bicycle accidents upon bicycle accident by reporting and texting the accident location using a smart phone application after identifying the accident location using a GPS equipment based on the signal that senses the accident through the system installed in the bicycle for the purpose to improve bicycle riders' safety. This study confirmed the effectiveness of the system developed to quickly respond to the accident to prevent secondary damage through an experiment.

Full mouth rehabilitation of a panfacial fracture patient with bilateral condylar fracture (다발성 안면골절환자의 교합회복 증례)

  • Park, Go-Woon;Cha, Min-Sang;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.159-169
    • /
    • 2014
  • Panfacial fractures require complex multidisciplinary approaches for treatment. Functional stability of bilateral condylar-disc complex should be the goal of the treatment. A patient with complex clinical panfacial fractures, including a bilateral condylar fractures visited our clinic. Facial asymmetry, insufficient vertical space and multiple missing teeth of the patient were major problems. Closed reduction and splint treatment were tried for stable condylar position. A functional and esthetic rehabilitation was accomplished by using implants and full mouth rehabilitaion. Potential possibilities of unstable occlusion should be prevented with night guard and periodic occlusal adjustment.

Development of Acoustic Positioning System for ROV using SBL System (SBL방식을 이용한 무인잠수정의 수중초음파 위치측정시스템 개발)

  • Yu, Son-Cheol;Byun, Seung-Woo;Kim, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.808-814
    • /
    • 2010
  • In this paper we executed a SBL(Short Baseline) underwater acoustic positioning system that is a kind of underwater position estimation system to estimates the 3-dimensional position of ROV(Remotely Operated Vehicle) using hydrophones and DAQ(Data Acquisition) system in the basin which dimensions are $3{\times}3{\times}1.7(m)$. For this experiment, we let 4 hydrophones in different positions of the basin for receiver and 1 hydrophone is fixed on the underwater vehicle for transmitting sensor(pinger). These five hydrophones are communicated with each other to find the 3-D positions of the moving ROV in the basin. The measured signals are collected by DAQ system and the positions of the ROV are plotted by LabView program in real-time. To estimate the position of the ROV we used a trigonometric method. In X and Y plane the estimated data has a small errors but in Z plane the estimated data has large errors so we cannot use this data for position control. One solution of this problem is using depth sensor that implemented of the underwater vehicle. Hereafter, we will test in the ocean using designed SBL system.

Performance Enhancement of the Attitude Estimation using Small Quadrotor by Vision-based Marker Tracking (영상기반 물체추적에 의한 소형 쿼드로터의 자세추정 성능향상)

  • Kang, Seokyong;Choi, Jongwhan;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.444-450
    • /
    • 2015
  • The accuracy of small and low cost CCD camera is insufficient to provide data for precisely tracking unmanned aerial vehicles(UAVs). This study shows how UAV can hover on a human targeted tracking object by using CCD camera rather than imprecise GPS data. To realize this, UAVs need to recognize their attitude and position in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for an UAV to estimate of his attitude by environment recognition for UAV hovering, as one of the best important problems. In this paper, we describe a method for the attitude of an UAV using image information of a maker on the floor. This method combines the observed position from GPS sensors and the estimated attitude from the images captured by a fixed camera to estimate an UAV. Using the a priori known path of an UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a marker on the floor and the estimated UAV's attitude. Since the equations are based on the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the UAV. The Kalman filter scheme is applied for this method. its performance is verified by the image processing results and the experiment.

Design of A Controller For Reducing Jerk-Motion In An Active Vision System (능동 시각 시스템을 위한 저크 발생 억제 제어기 설계)

  • Kim, Do-Yoon;Kim, Do-Hyoung;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2429-2431
    • /
    • 2003
  • 능동 시각 시스템은 카메라 시선 방향을 조정할 수 있는 장치로, 기존의 고정식 스테레오 카메라가 가질 수 없는 여러 가지 장점으로 인해 최근 많은 연구가 진행되고 있다. 능동 시각 시스템을 이용하여 움직이는 물체를 추적하는 경우, 목표 위치가 제어 주기마다 바뀌게 되는데 이 때 시스템의 현재 속도를 고려하지 않는다면, 급격한 속도의 변화로 인해 저크(jerk)가 크게 발생하게 된다. 저크는 물체 추적 성능에도 영향을 미칠 뿐만 아니라, 전원단의 잡음 발생을 유발시켜 제어기의 동작을 방해하며, 시스템에 기계적인 손상을 주기도 한다. 이러한 문제점을 해소하기 위해 기존의 방법들은 스플라인이나 고차 다항식의 계산 방법을 사용하였으나 계산량의 복잡도로 인해 다축 제어가 필요한 능동 시각 시스템에서 구현하기가 어렵다. 본 논문에서는 삼각 함수를 이용한 종(bell) 모양의 속도 프로파일을 이용해서 저크 탄생을 억제할 수 있는 제어기 구조를 제안한다. 제안된 방법은 간단한 계산량으로 저가의 마이크로프로세서에서도 실시간으로 동작이 가능하며 임의의 시점에 임의의 속도로 움직이고 있는 시스템에 저크를 최소화할 수 있는 지령 속도를 만들어 낼 수 있다. 제안된 방법은 시뮬레이션과 실제 시스템에 적용하여 그 유용성을 검증하였다.

  • PDF

Development of a Solar Tracker using LabVIEW for the enhancement of Solar Energy Utilization (LabVIEW 적용 태양추적장치 개발과 태양에너지이용의 활성화)

  • Oh, Seung-Jin;Lee, Yoon-Joon;Kim, Nam-Jin;Oh, Won-Jong;Kuan, Chen;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.98-107
    • /
    • 2010
  • This paper introduces step by step procedures for the design, fabrication and operation of a solar tracking system. The system presented in this study consists of motion controllers, motor drives, step-motors, feedback devices and other accessories to support its functional stability. CdS sensors are used to constantly generate feedback signals to the controller, which assures a high-precision solar tracking even under adverse conditions. It enables instant correction if the system goes off track by strong winds causing gear backlash. A parabolic dish concentrator is mounted on the tracking system whose diameter was 30cm. The solar position data, in terms of azimuth and elevation, sunrise and sunset times were compared with those of the Astronomical Applications Department of the U.S. Naval Observatory. The results presented here clearly demonstrate the high-accuracy of the present system in solar tracking, which are applicable to many existing solar systems.