Abstract
The accuracy of small and low cost CCD camera is insufficient to provide data for precisely tracking unmanned aerial vehicles(UAVs). This study shows how UAV can hover on a human targeted tracking object by using CCD camera rather than imprecise GPS data. To realize this, UAVs need to recognize their attitude and position in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for an UAV to estimate of his attitude by environment recognition for UAV hovering, as one of the best important problems. In this paper, we describe a method for the attitude of an UAV using image information of a maker on the floor. This method combines the observed position from GPS sensors and the estimated attitude from the images captured by a fixed camera to estimate an UAV. Using the a priori known path of an UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a marker on the floor and the estimated UAV's attitude. Since the equations are based on the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the UAV. The Kalman filter scheme is applied for this method. its performance is verified by the image processing results and the experiment.
소형 및 저가형 CCD 카메라의 성능은 소형 쿼드콥터의 정밀 추적기능을 구현하는데 있어서 충분한 성능을 갖추고 있지 못하는데 본 연구에서는 덜 정확한 GPS 보다 CCD 카메라를 이용한 보행자와 같은 대상물의 상공에서 강건한 호버링을 유지시키기 위한 방법을 제시하였다. 기존의 연구 대상이었던 고정된 물체가 아닌 보행자를 타깃으로 이용한 UAV의 절대 위치를 추정하는 방법을 제시하였다. 이는 UAV가 산악이나 사람들이 붐비는 공공지역에서 이동할 때 UAV의 절대위치를 인식할 수 있는 방법이 없을 경우 UAV 주변에서 움직이는 물체의 정보를 활용하여 UAV의 절대위치를 보정하는 방법으로 매우 유용하다. 연구를 위해서 보행자의 위치를 알고 있는 것으로 가정하나 실제적인 상황 속에서는 영상매칭을 통하여 그 정보를 수신하는 것으로 해석한다. 본 연구를 위하여 UAV의 위치 추정 불확실성을 정량적으로 나타내었으며, 좌표계 변환을 통한 영상기반의 기하학적 구속 식을 유도하여, 칼만 필터를 적용하여 로봇의 위치를 보정하여 위치 추정 불확실성을 줄일 수 있음을 보였다.