• Title/Summary/Keyword: 위치변위

Search Result 842, Processing Time 0.031 seconds

A New Approach with Combined Stereotactic Trans-multiarc Beams for Radiosurgery Based on the Linear Accelerator : Photon Knife (입체적횡다증회전조사를 병합한 방사선수술의 새로운 접근 : 포톤나이프)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.14 no.2
    • /
    • pp.149-158
    • /
    • 1996
  • Purpose : To get an accute steepness of dose gradients at outside the target volume in intracranial lesion and a less limitation of beam selection avoiding the high dose at normal brain tissue, this Photon Knife Radiosurgery System was developed in order to provide the three-dimensional dose distribution through the reconstruction of CT scan and the combined stereotactic trans-multiarc beam mode based on linear accelerator photon beam. Materials and methods : This stereotactic radiosurgery, Photon Knife based on linear accelerator photon beam was provided the non-coplanar multiarc and trans-multiarc irradiations. The stereotactic trans-multiarc beam mode can be obtained from the patient position in decubitus. This study has provided the 3-dimensional isodose curve and anatomical structures with the surface rendering technique. The dose distribution from the combined two trans-multiarcs (2M 2TM) was compared to that of four non-coplanar multiarcs (4M) with same collimator size of 25 mm in a diameter and total gantry movements. Results : In this study, it shows that the dose distributions of stereotactic beam mode are significantly depended on the selected couch and gantry angle in same collimator size. Practical dose distribution of combined stereotactic trans-multiarc beam has shown a more small rim thickness than that of the non-coplanar multiarc beam mode in axial, sagittal and coronal plane in our study. 3-Dimensional dose line displayed with surface rendering of irregular target shape is helpful to determine the target dose and to predict the prognosis in follow-up radiosurgery. Conclusions : 3-Dimensional dose line displayed with surface rendering of irregular target shape is essential in stereotactic radiosurgery. This combined stereotactic trans-multiarc beam has shown a less limitation of the selection couch and gantry beam angles for the target surrounding critical organs. It has shown that the dose distribution of combined trans-multiarc beam greatly depended on the couch and gantry angles. In our experiments, the absorbed dose has been decreased to $27%$ / mm in maximum at the interval of $50\%$ to $80\%$ of isodose line.

  • PDF

Cooling and Thermal Histories of Cretaceous-Paleogene Granites from Different Fault-bounded Blocks, SE Korean Peninsula: Fission-track Thermochronological Evidences (한반도 동남부의 주단층대에 의해 구분된 지질블록별 백악기-고제3기 화강암의 차별적 냉각-지열 이력: 피션트랙 열연대학적 증거)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.335-365
    • /
    • 2012
  • Fission-track (FT) thermochronological records from SE Korean Cretaceous-Paleogene granitic plutons in different fault-bounded blocks reveal contrasting cooling and later thermal histories. Overall cooling patterns are represented by a monotonous (J-shaped) curve in most plutons except some Cretaceous granites retaining a complicated (N-shaped) path due to post-reset re-cooling. Discriminative cooling rates over different temperature ranges can be explained for individual plutons with respect to relative pluton sizes, differences in initial heat loss depending on country rocks, and the presence and proximity of later igneous activity. Even within a single batholith, cooling times for different isotherms were roughly contemporaneous with respect to positions. Insignificant deviations in cooling ages from two different plutons in succession across the Yangsan fault may suggest their contemporaneity before major horizontal fault movement. The extent of later thermal rise recorded locally along the Yangsan and Dongnae fault zones were reached the Apatite Partial Stability Zone ($70-125^{\circ}C$), but did not exceed $200^{\circ}C$. Thermal alteration from fractured zones in the Yangsan-Ulsan fault junction may suggest a thermal reset above $290^{\circ}C$ resulting a complete reset in FT sphene age (31 Ma), caused by a tectonic subsidence in Early Oligocene. A consistency in FT zircon/apatite ages (24 Ma) may imply a sudden rapid cooling over $200-105^{\circ}C$, plausibly related to the abrupt tectonic uplift of the Pohang-Gampo Block including the fault junction in Late Oligocene. A remarkable trend of lower cooling ages for $300-200-100^{\circ}C$ isotherms (i.e., 19% for FT sphene and K-Ar biotite; 20% for FT zircon; 27% for FT apatite) from the east of the Ulsan fault (Pohang-Gampo Block) comparing to the west of the fault may be attributed to retarded cooling times from the Paleogene granites and also reflected by their partially-reduced apatite ages due to later thermal effects.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PHENOMENON PRODUCED DURING RETRACTION OF FOUR MAXILLARY INCISORS (상악 4절치의 후방견인시 나타나는 현상에 관한 유한요소법적 분석)

  • Cheon, Ok-Jin;Kim, Tae-Woo;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.525-541
    • /
    • 1995
  • This study was designed to investigate force systems and tooth movements produced by retraction archwire during retraction of four maxillary incisors after the maxillary canine retraction into the maxillary first premolar extraction space using the computer-aided three-dimensional finite element method. A three-dimensional finite element model, consisting of 2248 elements and 3194 nodes, was constructed. The model consisted of maxillary teeth and surrounding periodontal membranes, .022'$\times$.028'-slot brackets, and 5 types of retraction archwires(.019'$\times$.025' stainless steel archwire) modeled using the beam elements. The contact between the wire and the bracket slot was modeled using the gap elements because of the non-linear elastic behaviors of the contact between them. The forces and moments, End displacements produced by retraction archwire were measured at various conditions to investigate the difference according to types of loops, magnitudes of activation force, gable angle, and anterior lingual root torque. The results were expressed quantitative and visual ways in the three-dimensional method. The following conclusions can be drawn from this study.1. When the tear-drop loop archwire was activated, the mesio-distal and lingual translational movements of the teeth helped to close the extraction space, but unwanted movements of the teeth including intrusions and extrusions, and rotational movements in each direction occurred. 2. Activation of T-loop archwire compared with those of other types of retraction archwires produced the least translational movements of the teeth helped to space closure and also the least unwanted movements of the teeth. 3. Increasing amount of activation in the tear-drop archwire led not only to increase of translational movements of the teeth helped to space closure, but also to increase of unwanted movements of the teeth. 4. Addition of gable bend in the tear-drop archwire helped anterior teeth to translational movements in the mesio-distal direction, but increased unwanted movements of the teeth 5. Addition of anterior lingual root torque in the tear-drop archwire helped central and lateral incisor to improve their facio-lingual inclination, but increased unwanted movements of the teeth.

  • PDF

Chemical Age Dating of Zircon and Monazite by E1ectron Microprobe (전자현미분석기를 이용한 저어콘 및 모나자이트의 화학적 연대 측정법)

  • 이석훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.179-189
    • /
    • 2001
  • The determination of trace concentration of U, Th and Pb was carried out for chemical dating of zircon and monazite by electron microprobe. Detection limit and error range should be considered to measure characteristic X-rays of M-line from those minerals, which are low in the ionization of atom and low peak intensity in the spectrum. The element of U, Th and Pb were simultaneously measured with 3 spectrometers equipped with PET crystal to reduce a total counting time and error due to drift of instrumental operating condition. Detection limit could be improved from increase of the peak/background ratio through adjusting pulse height analyzer about 1000 mv baseline. Under permissible maximum analytical conditions, theoretical detection limit of U, Th and Pb is down to 30 ppm (99% confidence level). The analytical result was maintained at a relative error $\pm$10% ($2{\sigma}$) in 800 ppm Pb, $\pm$5% ($2{\sigma}$) in 2330 ppm U and $\pm$10% ($2{\sigma}$) in dating from a single measurement of zircon at 15 keV and 100 nA. However, for the precise dating of zircon and monazite, if it is considered a 3 $\mu\textrm{m}$ spatial resolution, <100 ppm ($3{\sigma}$) detection limit and <$\pm$10% ($2{\sigma}$) relative error, optimum analytical conditions are given as 15~20 keV accelerating voltage, 100~200 nA beam current and 300~1200 sec total counting time. To reduce material damage by high current, there is need to be up to 3~5 $\mu\textrm{m}$ of electron beam diameter, or to use arithmetic average of multiple measuring at a shorter counting time. A younger or relatively low concentration rocks can be dated chemically by lower detection limit and improved precision resulted from increase of current and measuring time.

  • PDF

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

Impact Resistance Reliability of Sn-1.2Ag-0.5Cu-0.4In Solder Joints (Sn-1.2Ag-0.5Cu-0.4In 조성 솔더 접합부의 내 충격 신뢰성 평가)

  • Yu, A-Mi;Lee, Chang-Woo;Kim, Jeong-Han;Kim, Mok-Soon;Lee, Jong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.226-226
    • /
    • 2008
  • 지난 10여년 동안 Sn-3.0Ag-0.5(wt%)Cu 합금은 대표 무연솔더 조성으로 다양한 전자제품의 실장 및 접합에 적용되어 왔으며, 그 신뢰성 역시 충분히 검증된 바 있다. 그러나 최근 Ag 가격의 급격한 상승과 솔더 접합부의 내 충격 신뢰성을 보다 향상시키고자 하는 업계의 동향은 Ag의 함량이 낮은 무연솔더 조성의 적용 확대를 유도하고 있다. 이에 따라 본 연구자들은 저 Ag 함유 무연슬더로 Sn-1.2Ag-0.5Cu-0.4In 조성을 제안한 바 있는데, 이는 Sn-3.0Ag-0.5Cu 조성 이상의 solderability를 가지면서도 그 금속원료 가격이 약 20% 가량 저렴한 특징을 가진다. 또한 열 싸이클링 (cycling) 테스트를 통한 슬더 조인트의 신뢰성을 평가한 결과, Sn-3.0Ag-0.5Cu에 크게 뒤떨어지지 않는 양호한 특성이 관찰되었다. 따라서 본 연구에서는 열 싸이클링 테스트와 더불어 최근 그 중요성이 지속적으로 커지고 있는 내 충격 신뢰성 평가 시험을 실시하여 개발된 4원계 무연솔더 조성의 기계적 특성을 기존 무연솔더 조성과 비교, 분석해 보았다. 각 솔더 조성은 솔더 볼 형태로 제조되어 CSP(Chip Scale Package) 상에 범핑 (bumping)되었으며, CSP를 PCB(Printed Circuit Board) 상에 실장하는 공정에서도 Sn-3.0Ag-0.5Cu 및 Sn-1.2Ag-0.5Cu-0.4In의 두 종류의 솔더 페이스트가 사용되었다. 본 연구에서의 내 충격 신뢰성 시험에는 자체 제작한 rod drop 시험기를 사용하였는데, 고정된 CSP 실장 board의 후면 부위를 일정한 높이에서 추를 반복적으로 자유 낙하시켜 급격한 충격을 주는 방식으로 실험을 실시하였다. 이 때 추의 무게는 30g, 낙하 높이는 10cm 였으며, 추의 낙하 시 측정된 board 의 휨 변위량은 약 0.7mm로 측정되었다. 사용된 CSP와 PCB 는 모두 daisy chain 방식으로 연결되어 있기 때문에 저항측정기를 사용한 간단한 실시간 저항 측정 방법으로 시험 이력에 따른 파단부의 발생 시점과 대략의 위치를 손쉽게 확인할 수 있었다. 솔더 조인트의 파단 기준 저항값으로 $1000\Omega$을 설정하였으며. 각 조건 당 5 개 이상의 샘플에 대해 평가를 실시한 후 그 평균값을 조사하였다. 시험 결과 제안된 Sn-1.2Ag-0.5Cu-0.4In 조성은 대표적인 저 Ag 함유 조성인 Sn-1.0Ag-0.5Cu에 비해서는 떨어지는 내 충격 신뢰성을 나타내었지만, 우수한 연성에 기인하여 Sn-3.0Ag-0.5Cu 조성에 비해서는 약 2 배 이상 우수한 신뢰성이 관찰되었다. 또한 CSP의 실장 시 Sn-3.0Ag-0.5Cu보다 Sn-1.2Ag-0.5Cu-0.4In 조성 솔더 페이스트를 적용한 경우에서 보다 우수한 내 충격 신뢰성을 나타내어 기본적으로 개발된 Sn-1.2Ag-0.5Cu-0.4In 솔더 페이스트가 Sn-3.0Ag-0.5Cu 조성의 기존 솔더 페이스트 보다 내 충격 신뢰성이 우수함을 검증할 수 있었다. 각 조성의 솔더 조인트를 $150^{\circ}C$ 에서 500시간 aging한 후 실시한 내 충격 신뢰성 평가에서는 모든 조성에서 그 신뢰성이 급감하는 경항을 나타내었으나, Sn-1.2Ag-0.5Cu-0.4In가 Sn-l.0Ag-0.5Cu보다도 그 상대적인 신뢰성이 우수한 것으로 관찰되었다. 이와 같이 aging 후 실시하는 충격시험은 가장 실제적인 상황과 유사한 조건이므로 상기의 실험 결과는 매우 고무적이었으며, 이에 대한 보다 면밀한 분석이 요청되었다. 마지막으로 파면 및 미세조직 관찰을 통하여 각 조성에서의 충격 파단 특성을 비교, 분석해 보았다.

  • PDF

Verification of Indicator Rotation Correction Function of a Treatment Planning Program for Stereotactic Radiosurgery (방사선수술치료계획 프로그램의 지시자 회전 오차 교정 기능 점검)

  • Chung, Hyun-Tai;Lee, Re-Na
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • Objective: This study analyzed errors due to rotation or tilt of the magnetic resonance (MR) imaging indicator during image acquisition for a stereotactic radiosurgery. The error correction procedure of a commercially available stereotactic neurosurgery treatment planning program has been verified. Materials and Methods: Software virtual phantoms were built with stereotactic images generated by a commercial programming language, Interactive Data Language (version 5.5). The thickness of an image slice was 0.5 mm, pixel size was $0.5{\times}0.5mm$, field of view was 256 mm, and image resolution was $512{\times}512$. The images were generated under the DICOM 3.0 standard in order to be used with Leksell GammaPlan$^{(R)}$. For the verification of the rotation error correction function of Leksell GammaPlan$^{(R)}$, 45 measurement points were arranged in five axial planes. On each axial plane, there were nine measurement points along a square of length 100 mm. The center of the square was located on the z-axis and a measurement point was on the z-axis, too. Five axial planes were placed at z=-50.0, -30.0, 0.0, 30.0, 50.0 mm, respectively. The virtual phantom was rotated by $3^{\circ}$ around one of x, y, and z-axis. It was also rotated by $3^{\circ}$ around two axes of x, y, and z-axis, and rotated by $3^{\circ}$ along all three axes. The errors in the position of rotated measurement points were measured with Leksell GammaPlan$^{(R)}$ and the correction function was verified. Results: The image registration errors of the virtual phantom images was $0.1{\pm}0.1mm$ and it was within the requirement of stereotactic images. The maximum theoretical errors in position of measurement points were 2.6 mm for a rotation around one axis, 3.7 mm for a rotation around two axes, and 4.5 mm for a rotation around three axes. The measured errors in position was $0.1{\pm}0.1mm$ for a rotation around single axis, $0.2{\pm}0.2mm$ for double and triple axes. These small errors verified that the rotation error correction function of Leksell GammaPlan$^{(R)}$ is working fine. Conclusion: A virtual phantom was built to verify software functions of stereotactic neurosurgery treatment planning program. The error correction function of a commercial treatment planning program worked within nominal error range. The virtual phantom of this study can be applied in many other fields to verify various functions of treatment planning programs.

Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced Ultra High Performance Concrete Deck and Inverted-T Steel Girder (강섬유로 보강된 초고성능 콘크리트 바닥판과 역T형 강거더 합성보의 휨거동 실험)

  • Yoo, Sung-Won;Ahn, Young-Sun;Cha, Yeong-Dal;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.761-769
    • /
    • 2014
  • Ultra high performance concrete (UHPC) has been developed to overcome the low strengths and brittleness of conventional concrete. Considering that UHPC, owing to its composition and the use of steel fibers, develops a compressive strength of 180 MPa as well as high stiffness, the top flange of the steel girder may be superfluous in the composite beam combining a slab made of UHPC and the steel girder. In such composite beam, the steel girder takes the form of an inverted-T shaped structure without top flange in which the studs needed for the composition of the steel girder with the UHPC slab are disposed in the web of the steel girder. This study investigates experimentally and analytically the flexural behavior of this new type of composite beam to propose details like stud spacing and slab thickness for further design recommendations. To that goal, eight composite beams with varying stud spacing and slab thickness were fabricated and tested. The test results indicated that stud spacing running from 100 mm to 2 to 3 times the slab thickness can be recommended. In view of the relative characteristic slip limit of Eurocode-4, the results showed that the composite beam developed ductile behavior. Moreover, except for the members with thin slab and large stud spacing, most of the specimens exhibited results different to those predicted by AASHTO LRFD and Eurocode-4 because of the high performance developed by UHPC.

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

Two-dimensional Velocity Measurements of Campbell Glacier in East Antarctica Using Coarse-to-fine SAR Offset Tracking Approach of KOMPSAT-5 Satellite Image (KOMPSAT-5 위성영상의 Coarse-to-fine SAR 오프셋트래킹 기법을 활용한 동남극 Campbell Glacier의 2차원 이동속도 관측)

  • Chae, Sung-Ho;Lee, Kwang-Jae;Lee, Sungu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2035-2046
    • /
    • 2021
  • Glacier movement speed is the most basic measurement for glacial dynamics research and is a very important indicator in predicting sea level rise due to climate change. In this study, the two-dimensional velocity measurements of Campbell Glacier located in Terra Nova Bay in East Antarctica were observed through the SAR offset tracking technique. For this purpose, domestic KOMPSAT-5 SAR satellite images taken on July 9, 2021 and August 6, 2021 were acquired. The Multi-kernel SAR offset tracking proposed through previous studies is a technique to obtain the optimal result that satisfies both resolution and precision. However, since offset tracking is repeatedly performed according to the size of the kernel, intensive computational power and time are required. Therefore, in this study, we strategically proposed a coarse-to-fine offset tracking approach. Through coarse-to-fine SAR offset tracking, it is possible to obtain a result with improved observation precision (especially, about 4 times in azimuth direction) while maintaining resolution compared to general offset tracking results. Using this proposed technique, a two-dimensional velocity measurements of Campbell Glacier were generated. As a result of analyzing the two-dimensional movement velocity image, it was observed that the grounding line of Campbell Glacier exists at approximately latitude -74.56N. The flow velocity of Campbell Glacier Tongue analyzed in this study (185-237 m/yr) increased compared to that of 1988-1989 (140-240 m/yr). And compared to the flow velocity (181-268 m/yr) in 2010-2012, the movement speed near the ground line was similar, but it was confirmed that the movement speed at the end of the Campbell Glacier Tongue decreased. However, there is a possibility that this is an error that occurs because the study result of this study is an annual rate of glacier movement that occurred for 28 days. For accurate comparison, it will be necessary to expand the data in time series and accurately calculate the annual rate. Through this study, the two-dimensional velocity measurements of the glacier were observed for the first time using the KOMPSAT-5 satellite image, a domestic X-band SAR satellite. It was confirmed that the coarse-to-fine SAR offset tracking approach of the KOMPSAT-5 SAR image is very useful for observing the two-dimensional velocity of glacier movements.