• 제목/요약/키워드: 위성패널

검색결과 55건 처리시간 0.032초

대형정지궤도위성 열평형시험용 열제어패널 지지 구조물 구조안전성 검토 결과

  • 임성진;서희준;조혁진;박성욱;손은혜;문귀원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.103.2-103.2
    • /
    • 2015
  • 10-3 Pa 이하의 고진공 환경과 $180^{\circ}C$ 이하의 극저온 환경에서 대형정지궤도위성의 고온 열평형 환경구현을 위한 열제어패널이 설계되었다. 열제어패널은 가로 2.2 m, 세로 2.6 m, 두께 2 mm의 구리판에 구리 튜브가 브레이징되어 있는 형태로 설계되었으며, 지상에서 6 m 이상의 높이에 설치되고 위성의 위치에 따라 이동이 가능해야 하기 때문에, 별도의 지지 구조물이 함께 설계되었다. 따라서, 열제어패널 설치 및 고정을 위한 지지구조물의 경우 160 kg의 무게를 견뎌내야 하며 이동 및 설치에 있어 구조적인 안전성이 확보 되어야 한다. 이에 본 연구에서는 상용유한요소해석 프로그램을 사용하여 열평형시험 시 위성체 상단부의 고온 환경모사를 위한 열제어패널 지지구조물에 대한 구조 안전성을 확인 하였다.

  • PDF

샌드위치 패널 구조로 된 소형 위성의 동적거동 응답 및 연구 (Dynamic Behavior Responses and Investigation of a Small-Class Satellite Having Sandwich Panel Structures)

  • 조희근;이상현;차원호
    • 한국항공우주학회지
    • /
    • 제40권9호
    • /
    • pp.771-780
    • /
    • 2012
  • 나로호(KSLV-1)의 3차 발사에 탑재될 나로과학위성(Naro-Science Satellite)의 개발이 성공적으로 완료되었다. 나로과학위성은 100kg급의 소형 과학위성이며 전형적인 알루미늄 골격 구조에 경량 고강도의 알루미늄 허니컴 샌드위치 패널이 부착된 구조이다. 본 연구에서는 나로과학위성의 설계 요구조건에 대한 동적거동을 시험 및 전산구조 유한요소 수치해석적 방법으로 검증하였다. 연구를 통하여 발사체로부터 인가되는 각종 진동 및 외란으로 인한 파괴와 안전율(safety factor) 확보에 대한 위성 구조체 핵심 설계 및 분석기술을 확보하였다. 이러한 시험 및 수치해석 결과를 바탕으로 위성 구조설계의 신뢰성을 확보하고, 첨단 위성설계 기술의 축적을 통하여 차후 개발될 위성의 중요한 자료로 활용한다.

하이브리드 복합재 샌드위치 패널로 구성된 전구조 복합재 위성의 랜덤진동 특성 평가 (Random Vibration Characteristics of a Whole Structure Composite Satellite Having Hybrid Composite Sandwich Panels)

  • 조희근;이주훈
    • 한국항공우주학회지
    • /
    • 제38권8호
    • /
    • pp.798-805
    • /
    • 2010
  • 전구조 소형 복합재 위성인 과학기술위성 3호가 국내 최초로 개발되었다. 과학기술위성 3호는 기존의 위성과 달리 알루미늄 프레임이 없는 구조로 되어있으며 알루미늄 코어에 적층복합재 스킨을 가진 샌드위치 패널의 조합으로 구성되었다. 이 복합재 패널의 결합으로 구성된 격자형태의 공간에 다수의 전장박스와 탑재체 및 장치들이 장착된다. 본 연구는 과학기술위성 3호의 랜덤진동 응답에 관한 연구이며 이를 위하여 FEA 해석과 시험이 수행 되었다. 진동시험 결과와 전산해석결과를 서로 상호 비교 검토함으로써 위성의 진동 특성을 규명하고 결과의 신뢰성을 검증하였다.

탄소복합재를 이용한 위성 패널의 열해석 (Thermal Analysis of Satellite Panel Using Carbon Composites)

  • 전형열;김정훈;박종석;박근주
    • 항공우주기술
    • /
    • 제10권2호
    • /
    • pp.114-120
    • /
    • 2011
  • 인공위성의 효율적인 열제어를 위해 알루미늄으로 만들어진 하니콤 패널과 OSR로 구성된 방열판을 사용한다. 또한 추가적으로 발열량이 많은 부품의 경우, 알루미늄으로 만들어진 더블러와 히트파이프 등을 이용하여 열제어를 수행한다. 최근 위성 전장 부품의 발열량의 증가로 정해진 위성의 크기, 발사 중량 및 비용으로 더 많은 열을 외부로 효율적으로 방출할 수 있는 방열 능력향상에 대한 필요성으로 새로운 열제어 물질에 대한 연구가 진행 중이다. 특히, 탄소 복합재는 일반적으로 열전도가 매우 높고, 가볍고, 기계적 강성에 좋은 특성이 있어 차세대 열제어를 위한 물질로 많은 연구가 진행되고 있다. 본 논문에서는 차세대 탄소 복합재인, APG(Annealed Pyrolytic Graphite)와 탄소-탄소 복합재(carbon-carbon composites)를 이용하여 통신패널의 열제어를 수행하는 경우와 기존의 열제어 방식과의 차이를 수치적으로 비교하였다.

프리즘 구조의 집광효과를 이용한 이산형 LED 패널의 광학적 연속성 구현에 관한 연구 (A Study on Optical Seemless of Discrete LED panels with Focusing Effect of prism Structure)

  • 조성환;김응보;최원석;정연호
    • 한국위성정보통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.11-14
    • /
    • 2017
  • 본 논문은 프리즘 구조물의 집광효과를 이용하여 옥외용 사이니지 이산형 LED 패널의 광학적 불연속성을 개선할 수 있는 방법적 접근에 관한 것이다. 광투과성이 우수한 Polycarbonate에 MEMS(Microelectromechanical systems) 공정 및 극초단파(Femto-second) 레이저를 이용하여 프리즘 형태를 패터닝을 하였다. 패터닝된 polycarbonate는 light guide film의 역할을 하여 서로 다른 디스플레이 패널에서 발생하는 빛을 프리즘 구조에 의해 한 곳으로 모이게 함을 확인하였다. Polycarbonate와 디스플레이 패널의 간격에 따라 디스플레이 패널간의 거리를 조절할 수 있었으며 한 곳으로 모인 빛은 마치 두 디스플레이 패널이 연결된 것과 같은 효과를 나타내었다. 이는 아웃도어 사이니지용 디스플레이 패널에서 발생하는 문제점인 광학적 불연속성을 개선할 수 있을 것으로 보인다.

통신방송위성 Ka-대역 기술인증모델 탑재체의 열진공시험을 위한 MGSE 패널 열설계 (Thermal Design of MGSE Panel for Thermal Vacuum Test of Ka-band Engineering Qualification Model Payload of Communications and Broadcasting Satellite)

  • 김정훈;최성봉;양군호
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.96-102
    • /
    • 2003
  • 통신방송위성 Ka-대역 기술인증모델(EQM)탑재체의 열진공시험을 위한 기계지상지원장비 패널의 열설계를 수행하고 열진공 챔버내에서의 성능시험을 위한 열환경을 수치적 방법으로 예측하였다. 탑재체 패널의 히트파이프 배열 설계 검증을 위한 열해석은 SINDA를 사용하였다. 개발된 16개 히트파이트 배열은 Ka-대역 중계기 전장품들의 성능시험을 위해 적절하게 설계되었다. 고온 성능시험은 패널 외부 면재에 가해지는 열유속이 265W/㎡ 일 때 수행되고, 저온 성능시험은 패널 외부로부터 열유입이 없을 때 수행된다. 히트파이프의 최대 열수송 용량은 2723 W-cm로 예측되었다.

우주파편 초고속충돌에 의한 위성구조체의 손상에 관한 연구 (A Study on the Damage of Satellite caused by Hypervelocity Impact with Orbital Debris)

  • 강필성;임찬경;윤성기;임재혁;황도순
    • 한국항공우주학회지
    • /
    • 제40권7호
    • /
    • pp.555-563
    • /
    • 2012
  • 지구궤도 상에는 무수히 많은 우주파편(Orbital debris)이 존재하며 매우 높은 속도로 선회하고 있기 때문에 정상가동중인 인공위성과 충돌 시 위성구조체에 치명적인 손상을 일으킬 수 있다. 본 연구에서는 입자완화유체동역학(Smoothed particle hydrodynamics, SPH)을 이용하여 우주파편과의 초고속충돌로 인해 발생 가능한 저궤도 위성구조체의 손상분석을 수행하였다. 위성구조체의 본체 패널(Panel)로 사용되는 허니콤샌드위치패널(Honeycomb sandwich panel, HC/SP)에 대해 충돌속도에 따른 손상분석을 수행하였으며 위성구조체 내부부품의 안전성 분석을 위해 전자박스가 HC/SP에 직접 부착된 경우와 10cm 오프셋 된 경우에 대한 초고속충돌해석 및 손상분석을 수행하였다. 고도 685km의 저궤도에서 2% 정도의 충돌확률을 갖는 우주파편들을 고려할 때, HC/SP 자체에 관통이 발생하는 것으로 나타났으며 부착형 전자박스의 경우와 오프셋형 전자박스의 경우에는 전자박스에 관통이 발생하지 않고 미소 크레이터(Crater)만 발생되는 것으로 나타났다.

지구 저궤도 위성의 영상임무 자세에 따른 열적 영향 고찰 (Investigation on Thermal Effect for a Low Earth Orbit Satellite during Imaging Maneuvering)

  • 김희경;이장준;현범석
    • 한국항공우주학회지
    • /
    • 제36권12호
    • /
    • pp.1216-1221
    • /
    • 2008
  • 본 논문에서 고려된 저궤도 위성은 고정형 태양 전지판을 가지기 때문에 낮구간(daylight) 동안에 태양전지판이 태양지향(sun-pointing) 자세를 유지하고, 관측 임무 수행을 위해 태양 전지판 방향과 반대방향에 위치한 탑재체가 지구지향(nadir-pointing)이 되도록 자세를 변경한다. 이 때 낮기간의 대부분을 차지하는 태양지향 자세에서는 위성 패널(panel)로 입사하는 외부 열환경 요인이 지구 복사열과 알비도(Albedo)이기 때문에, 비교적 안정적인 열환경 조건을 가지고 있다. 이에 반하여, 관측 임무를 수행하는 궤도 10% 정도의 지구지향 자세에서는 위성의 열환경 조건에 가장 지배적인 영향을 주는 태양광이 위성 패널에 영향을 준다. 비록 위성이 비교적 짧은 시간 동안에 지구 지향의 자세를 유지하지만, 이러한 열한경 조건의 변화 때문에 위성의 열설계에서 지구지향의 임무 자세에 따른 열적 영향에 대한 검토가 필요하다. 본 연구에서는 열해석 모델에 관측 임무 구간 동안의 지구지향 자세를 반영한 열해석 결과를 통하여 그 영향을 알아보았다.

통신위성 전력시스템의 기본 설계

  • 최재동
    • 항공우주기술
    • /
    • 제1권1호
    • /
    • pp.84-96
    • /
    • 2002
  • 본 연구는 차세대 국내 통신위성 전력계 서브시스템 비행모델 설계의 기본 지침서로 사용하기 위한 것이다. 이러한 목적을 위해 전력계 시스템은 모든 기대되는 위성 임무기간동안 서브시스템 규격서에 제시된 성능요구사항을 만족시키기 위해 설계되어졌다. 조절된 전력 버스는 전력제어 및 분배장치로부터 다양한 위성부하까지 42.5V로 분배되어지고 태양전지 어레이들은 6개의 패널로 구성하였다. 한 패널은 3개의 회로로 구성되며 각 회로는 7개의 스트링으로 설계되어졌다. 배터리 시스템은 2개의 배터리로 구성되어졌으며 각 배터리는 26개(IPV) NiH2셀로 구성되어졌다. 배터리는 80% DOD(Depth of Discharge)에서 에너지의 2878Watt-hours를 공급할 수 있는 용량으로 설계되어졌다.

  • PDF

액체헬륨을 이용한 위성시험용 극저온패널 냉각시스템 개발 및 검증 (Development and Validation of Cryopanel Cooling System Using Liquid Helium for a Satellite Test)

  • 조혁진;문귀원;서희준;이상훈;홍석종;최석원
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.213-218
    • /
    • 2010
  • 인공위성 적외선 탑재체의 열싱크 역할을 위해, 액체헬륨을 이용하여 극저온패널(가로 약 800 mm, 세로 약 700 mm)을 4.2 K까지 냉각시키는 시스템을 설계, 개발, 검증하였다. 유효직경 8 m, 유효 깊이 10 m의 대형열진공챔버에서 검증된 본 냉각시스템은 500리터 용량의 액체헬륨용기 두 개(극저온 패널로의 액체헬륨 또는 저온헬륨가스 주 공급용기 및 주공급용기로의 재충진용기)를 사용하였는데, 목표인 극저온패널의 냉각 및 온도제어는 주 공급용기 내부의 미세압력조절을 통해 액체헬륨 공급유량을 제어함으로써 이루었다. 극저온패널에 공급된 후 배기되는 저온 헬륨가스는 특별히 설계, 제작된 사중진공배관의 제3층을 흐르며 열차단막의 역할을 수행함으로써, 액체헬륨 공급 라인인 제1층(중심배관)으로의 열유입을 최소화하였다. 극저온패널을 상온에서 40 K(합성표준불확도 194 mK)까지 냉각시키는데 약 3시간이 소요되었으며, 20 W의 열을 발산하는 극저온패널을 40 K 주변 온도에서 1 K 이내의 온도균일도를 가지며 유지할 수 있었다.