• Title/Summary/Keyword: 위성영상분석

Search Result 1,650, Processing Time 0.032 seconds

The riparian vegetation community models according to hydrologic and soil environments - Case of Daecheongho lake reservoirs - (수문 및 토양환경을 고려한 수변식생군락 조성 모델 - 대청호 저수지를 사례로 -)

  • Park, Miok
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.144-154
    • /
    • 2017
  • The riparian vegetation is one of corridor type ecosystems, an ecotone and able to improve the ecological soundness by structural and functional link. And they act as habitats, sources and sinks of species, conduits, filters and barriers. This study was carried out to develop the vegetation model for the fluctuation areas of lake reservoirs consider of hydrologic and soil environments according to the vegetation structure of the reference ecosystem. To develop the case study, 2 sites within 10degree slope of the Daecheong Lake were selected. The riparian vegetation models were built by the results of GIS analysis, remote satellite analysis, field survey results, consider of water level, flooded frequency, soil and topographic index, land cover or land use etc. 1) study area varied from FWL to -5m of NFWL, 2) slope 10% below, 3) vegetations flooded below 100days yearly are Salix koreensis, Salix chaenomeloides, Salix gracilistyla, 4)land cover type classified wildlife grassland, abandoned paddy field, cropland according to landuse (or landcover), 5)finally model was constructed as ecological landscape forest. The model designs were suggested by 2 types in Daecheong lake reservoir. The model for the riparian vegetation corridors could be the basic and useful data to improve the ecological and landscape properties.

Evaluation and Comparison of Meteorological Drought Index using Multi-satellite Based Precipitation Products in East Asia (다중 위성영상 기반 강우자료를 활용한 동아시아 지역의 기상학적 가뭄지수 비교 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Kim, Taegon;Hong, Eun-Mi;Sur, Chanyang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • East Asia, which includes China, Japan, Korea, and Mongolia, is highly impacted by hydroclimate extremes such drought, flood, and typhoon recent year. In 2017, more than 18.5 million hectares of crops have been damaged in China, and Korea has suffered economic losses as a result of severe drought. Satellite-derived rainfall products are becoming more accurate as space and time resolution become increasingly higher, and provide an alternative means of estimating ground-based rainfall. In this study, we verified the availability of rainfall products by comparing widely used satellite images such as Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Global Precipitation Climatology Centre (GPCC), and Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with ground stations in East Asia. Also, the satellite-based rainfall products were used to calculate the Standardized Precipitation Index (SPI). The temporal resolution is based on monthly images and compared with the past 30 years data from 1989 to 2018. The comparison between rainfall data based on each satellite image products and the data from weather station-based weather data was shown by the coefficient of determination and showed more than 0.9. Each satellite-based rainfall data was used for each grid and applied to East Asia and South Korea. As a result of SPI analysis, the RMSE values of CHIRPS were 0.57, 0.53 and 0.47, and the MAE values of 0.46, 0.43 and 0.37 were better than other satellite products. This satellite-derived rainfall estimates offers important advantages in terms of spatial coverage, timeliness and cost efficiency compared to analysis for drought assessment with ground stations.

Inflow Estimation into Chungju Reservoir Using RADAR Forecasted Precipitation Data and ANFIS (RADAR 강우예측자료와 ANFIS를 이용한 충주댐 유입량 예측)

  • Choi, Changwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.857-871
    • /
    • 2013
  • The interest in rainfall observation and forecasting using remote sensing method like RADAR (Radio Detection and Ranging) and satellite image is increased according to increased damage by rapid weather change like regional torrential rain and flash flood. In this study, the basin runoff was calculated using adaptive neuro-fuzzy technique, one of the data driven model and MAPLE (McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as one of the input variables. The flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated. Six rainfall events occurred at flood season in 2010 and 2011 in Chungju Reservoir basin were used for the input data. The flood estimation results according to the rainfall data used as training, checking and testing data in the model setup process were compared. The 15 models were composed of combination of the input variables and the results according to change of clustering methods were compared and analysed. From this study was that using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation. The model using MAPLE forecasted precipitation data showed relatively better result at inflow estimation Chungju Reservoir.

PERFORMANCE OF FIMS MICROCHANNEL PLATE DETECTOR SYSTEM (FIMS의 마이크로채널 플레이트 검출기 시스템의 특성)

  • Nam, U.W.;Rhee, J.G.;Kong, K.N.;Park, Y.S.;Jin, K.C.;Jin, H.;Park, J.H.;Yuk, I.S.;Seon, K.I.;Han, W.;Lee, D.H.;Ryu, K.S.;Min, K.W.;Edelstein, J.;Korpela, E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.273-282
    • /
    • 2002
  • We describe some performance of the detector electronics system for the FIMS (Far-ultraviolet Imaging Spectrograph) mission. The FIMS mission to map the far ultraviolet sky uses MCP (micro-channel plate) detectors with a crossed delay line anode to record photon arrival events. FIMS has two MCP detectors, each with a ~25mm$\times$25mm active area. The unconventional anode design allows for the use of a single set of position encoding electronics for both detector fields. The centroid position of the charge cloud, generated by the photon-stimulated MCP, is determined by measuring the arrival times at both ends of the anode following amplification and external delay. The temporal response of the detector electronics system determines the readout's positional resolution for the charge centroid. High temporal resolution (<$35{\times}75$ps FWHM) and low power consumption (< 6W) were achieved for the FIMS detector electronics system.

Detecting Surface Changes Triggered by Recent Volcanic Activities at Kīlauea, Hawai'i, by using the SAR Interferometric Technique: Preliminary Report (SAR 간섭기법을 활용한 하와이 킬라우에아 화산의 2018 분화 활동 관측)

  • Jo, MinJeong;Osmanoglu, Batuhan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1545-1553
    • /
    • 2018
  • Recent eruptive activity at Kīlauea Volcano started on at the end of April in 2018 showed rapid ground deflation between May and June in 2018. On summit area Halema'uma'u lava lake continued to drop at high speed and Kīlauea's summit continued to deflate. GPS receivers and electronic tiltmeters detected the surface deformation greater than 2 meters. We explored the time-series surface deformation at Kīlauea Volcano, focusing on the early stage of eruptive activity, using multi-temporal COSMO-SkyMed SAR imagery. The observed maximum deformation in line-of-sight (LOS) direction was about -1.5 meter, and it indicates approximately -1.9 meter in subsiding direction by applying incidence angle. The results showed that summit began to deflate just after the event started and most of deformation occurred between early May and the end of June. Moreover, we confirmed that summit's deflation rarely happened since July 2018, which means volcanic activity entered a stable stage. The best-fit magma source model based on time-series surface deformation demonstrated that magma chambers were lying at depths between 2-3 km, and it showed a deepening trend in time. Along with the change of source depth, the center of each magma model moved toward the southwest according to the time. These results have a potential risk of including bias coming from single track observation. Therefore, to complement the initial results, we need to generate precise magma source model based on three-dimensional measurements in further research.

Development of Plant Phenology and Snow Cover Detection Technique in Mountains using Internet Protocol Camera System (무인카메라 기반 산악지역 식물계절 및 적설 탐지 기술 개발)

  • Keunchang, Jang;Jea-Chul, Kim;Junghwa, Chun;Seokil, Jang;Chi Hyeon, Ahn;Bong Cheol, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.318-329
    • /
    • 2022
  • Plant phenology including flowering, leaf unfolding, and leaf coloring in a forest is important to understand the forest ecosystem. Temperature rise due to recent climate change, however, can lead to plant phenology change as well as snowfall in winter season. Therefore, accurate monitoring of forest environment changes such as plant phenology and snow cover is essential to understand the climate change effect on forest management. These changes can monitor using a digital camera system. This paper introduces the detection methods for plant phenology and snow cover at the mountain region using an unmanned camera system that is a way to monitor the change of forest environment. In this study, the Automatic Mountain Meteorology Stations (AMOS) operated by Korea Forest Service (KFS) were selected as the testbed sites in order to systematize the plant phenology and snow cover detection in complex mountain areas. Multi-directional Internet Protocol (IP) camera system that is a kind of unmanned camera was installed at AMOS located in Seoul, Pyeongchang, Geochang, and Uljin. To detect the forest plant phenology and snow cover, the Red-Green-Blue (RGB) analysis based on the IP camera imagery was developed. The results produced by using image analysis captured from IP camera showed good performance in comparison with in-situ data. This result indicates that the utilization technique of IP camera system can capture the forest environment effectively and can be applied to various forest fields such as secure safety, forest ecosystem and disaster management, forestry, etc.

Environmental spatial data-based vegetation impact assessment for advanced environmental impact assessment (환경공간정보를 이용한 식생부문 환경영향평가 고도화 방안 연구)

  • Yuyoung Choi;Ji Yeon Lee;Hyun-Chan Sung
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.99-111
    • /
    • 2022
  • Vegetation is the basis for biodiversity conservation and sustainable development. In the Environmental Impact Assessment (EIA), which is the most direct and efficient policy measure to prevent degradation of nature, vegetation-related assessment has limitations as it is not based on quantitative and scientific methods. In addition, it focuses on the presence of protected species; hence, it does not take into account the role of vegetation as a habitat on a wide-area scale. As a way to overcome these limitations, this study aims to contribute to the quantification and advancement of future EIA on vegetation. Through the review of previous studies, core areas, connectivity, and vegetation condition were derived as the items to be dealt within the macroscopic aspect of vegetation impact assessment. Each item was spatially constructed using land cover maps and satellite imageries, and time series change analysis was performed. As a result, it was found that vegetation has been continuously deteriorating due to development in all aspects, and in particular, development adversely affects not only the inside of the project site but also the surrounding area. Although this study suggested the direction for improvement of the EIA in the vegetation sector based on data analysis, a more specific methodology needs to be established in order to apply it to the actual EIA process. By actively utilizing various environmental spatial data, the impact of the development on the natural ecosystem can be minimized.

Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite (COMS 위성의 가시 및 적외 영상 채널로부터 복원된 대류운의 강우강도 향상과 검증)

  • Moon, Yun Seob;Lee, Kangyeol
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.420-433
    • /
    • 2016
  • The purpose of this study is to improve the calibration matrixes of 2-D and 3-D convective rainfall rates (CRR) using the brightness temperature of the infrared $10.8{\mu}m$ channel (IR), the difference of brightness temperatures between infrared $10.8{\mu}m$ and vapor $6.7{\mu}m$ channels (IR-WV), and the normalized reflectance of the visible channel (VIS) from the COMS satellite and rainfall rate from the weather radar for the period of 75 rainy days from April 22, 2011 to October 22, 2011 in Korea. Especially, the rainfall rate data of the weather radar are used to validate the new 2-D and 3-DCRR calibration matrixes suitable for the Korean peninsula for the period of 24 rainy days in 2011. The 2D and 3D calibration matrixes provide the basic and maximum CRR values ($mm\;h^{-1}$) by multiplying the rain probability matrix, which is calculated by using the number of rainy and no-rainy pixels with associated 2-D (IR, IR-WV) and 3-D (IR, IR-WV, VIS) matrixes, by the mean and maximum rainfall rate matrixes, respectively, which is calculated by dividing the accumulated rainfall rate by the number of rainy pixels and by the product of the maximum rain rate for the calibration period by the number of rain occurrences. Finally, new 2-D and 3-D CRR calibration matrixes are obtained experimentally from the regression analysis of both basic and maximum rainfall rate matrixes. As a result, an area of rainfall rate more than 10 mm/h is magnified in the new ones as well as CRR is shown in lower class ranges in matrixes between IR brightness temperature and IR-WV brightness temperature difference than the existing ones. Accuracy and categorical statistics are computed for the data of CRR events occurred during the given period. The mean error (ME), mean absolute error (MAE), and root mean squire error (RMSE) in new 2-D and 3-D CRR calibrations led to smaller than in the existing ones, where false alarm ratio had decreased, probability of detection had increased a bit, and critical success index scores had improved. To take into account the strong rainfall rate in the weather events such as thunderstorms and typhoon, a moisture correction factor is corrected. This factor is defined as the product of the total precipitable waterby the relative humidity (PW RH), a mean value between surface and 500 hPa level, obtained from a numerical model or the COMS retrieval data. In this study, when the IR cloud top brightness temperature is lower than 210 K and the relative humidity is greater than 40%, the moisture correction factor is empirically scaled from 1.0 to 2.0 basing on PW RH values. Consequently, in applying to this factor in new 2D and 2D CRR calibrations, the ME, MAE, and RMSE are smaller than the new ones.

The Moving Speed of Typhoons of Recent Years (2018-2020) and Changes in Total Precipitable Water Vapor Around the Korean Peninsula (최근(2018-2020) 태풍의 이동속도와 한반도 주변의 총가강수량 변화)

  • Kim, Hyo Jeong;Kim, Da Bin;Jeong, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.264-277
    • /
    • 2021
  • This study analyzed the relationship between the total precipitable water vapor in the atmosphere and the moving speed of recent typhoons. This study used ground observation data of air temperature, precipitation, and wind speed from the Korea Meteorological Administration (KMA) as well as total rainfall data and Red-Green-Blue (RGB) composite images from the U.S. Meteorological and Satellite Research Institute and the KMA's Cheollian Satellite 2A (GEO-KOMPSAT-2A). Using the typhoon location and moving speed data provided by the KMA, we compared the moving speeds of typhoon Bavi, Maysak, and Haishen from 2020, typhoon Tapah from 2019, and typhoon Kong-rey from 2018 with the average typhoon speed by latitude. Tapah and Kong-rey moved at average speed with changing latitude, while Bavi and Maysak showed a significant decrease in moving speed between approximately 25°N and 30°N. This is because a water vapor band in the atmosphere in front of these two typhoons induced frontogenesis and prevented their movement. In other words, when the water vapor band generated by the low-level jet causes frontogenesis in front of the moving typhoon, the high pressure area located between the site of frontogenesis and the typhoon develops further, inducing as a blocking effect. Together with the tropical night phenomenon, this slows the typhoon. Bavi and Maysak were accompanied by copious atmospheric water vapor; consequently, a water vapor band along the low-level jet induced frontogenesis. Then, the downdraft of the high pressure between the frontogenesis and the typhoon caused the tropical night phenomenon. Finally, strong winds and heavy rains occurred in succession once the typhoon landed.

Analysis of Surface Urban Heat Island and Land Surface Temperature Using Deep Learning Based Local Climate Zone Classification: A Case Study of Suwon and Daegu, Korea (딥러닝 기반 Local Climate Zone 분류체계를 이용한 지표면온도와 도시열섬 분석: 수원시와 대구광역시를 대상으로)

  • Lee, Yeonsu;Lee, Siwoo;Im, Jungho;Yoo, Cheolhee
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1447-1460
    • /
    • 2021
  • Urbanization increases the amount of impervious surface and artificial heat emission, resulting in urban heat island (UHI) effect. Local climate zones (LCZ) are a classification scheme for urban areas considering urban land cover characteristics and the geometry and structure of buildings, which can be used for analyzing urban heat island effect in detail. This study aimed to examine the UHI effect by urban structure in Suwon and Daegu using the LCZ scheme. First, the LCZ maps were generated using Landsat 8 images and convolutional neural network (CNN) deep learning over the two cities. Then, Surface UHI (SUHI), which indicates the land surface temperature (LST) difference between urban and rural areas, was analyzed by LCZ class. The results showed that the overall accuracies of the CNN models for LCZ classification were relatively high 87.9% and 81.7% for Suwon and Daegu, respectively. In general, Daegu had higher LST for all LCZ classes than Suwon. For both cities, LST tended to increase with increasing building density with relatively low building height. For both cities, the intensity of SUHI was very high in summer regardless of LCZ classes and was also relatively high except for a few classes in spring and fall. In winter the SUHI intensity was low, resulting in negative values for many LCZ classes. This implies that UHI is very strong in summer, and some urban areas often are colder than rural areas in winter. The research findings demonstrated the applicability of the LCZ data for SUHI analysis and can provide a basis for establishing timely strategies to respond urban on-going climate change over urban areas.