• Title/Summary/Keyword: 웨이브렛 파형

Search Result 19, Processing Time 0.027 seconds

Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation (초음파 에코파형의 웨이브렛 변환과 비파괴평가에의 응용)

  • Park, Ik-Keun;Park, Un-Su;Ahn, Hyung-Keun;Kwun, Sook-In;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.501-510
    • /
    • 2000
  • Recently, advanced signal analysis which is called "time-frequency analysis" has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and naw sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch.

  • PDF

Voiced/Unvoiced/Silence Classification of Speech Signal Using Wavelet Transform (웨이브렛 변환을 이용한 음성신호의 유성음/무성음/묵음 분류)

  • 손영호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.449-453
    • /
    • 1998
  • 일반적으로 음성신호는 파형의 특성에 따라 파형이 준주기적인 유성음과 주기성 없이 잡음과 유사한 무성음 그리고 배경 잡음에 해당하는 묵음의 세 종류로 분류된다. 기존의 유성음/무성음/묵음 분류 방법에서는 피치정보, 에너지 및 영교차율 등이 분류를 위한 파라미터로 널리 사용되었다. 본 논문에서는 음성신호를 웨이브렛 변환한 신호에서 스펙트럼상에서이 변화를 파라미터로 하는 유성음/무성음/묵음 분류 알고리즘을 제안하고 제안된 알고리즘으로 검출한 결과와 이에 따른 문제점을 검토하였다.

  • PDF

Wavelet Transform Based Doconvolution of Ultrasonic Pulse-Echo Signal (웨이브렛 변환을 이용한 초음파 펄스 에코 신호의 디컨볼루션)

  • Jhang, Kyung-Young;Jang, Hyo-Seong;Park, Byung-Yll;Ha, Job
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.511-520
    • /
    • 2000
  • Ultrasonic pulse echo method comes to be difficult to apply to the multi-layered structure with very thin layer, because the echoes from the top and the bottom of the layer are superimposed. We can easily meet this problem when the silicon chip layer in the semiconductor is inspected by a SAM equipment using fairly low frequency lower than 20MHz by which severe attenuation in the epoxy mold compound of packaging material can be overcome. Conventionally, deconvolution technique has been used for the decomposition of superimposed UT signals, however it has disabilities when the waveform of the transmitted signal is distorted according to the propagation. In this paper, the wavelet transform based deconvolution(WTBD) technique is proposed as a new signal processing method that can decompose the superimposed echo signals with superior performances compared to the conventional deconvolution technique. WTBD method uses the wavelet transform in the pre-stage of deconvolution to extract out the common waveform from the transmitted and received signal with distortion. Performances of the proposed method we shown by through computer simulations using model signal with noise and we demonstrated by through experiments for the fabricated semiconductor sample with partial delamination at the top of silicon chip layer.

  • PDF

The Detection of Epileptic Spikes in EEG using Neural Network (신경망과 웨이브렛 변환을 이용한 뇌전도의 간질 극파 검출)

  • 최혜원;이성수;윤영로
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.6
    • /
    • pp.555-560
    • /
    • 1999
  • 간질은 신경세포의 일부가 짧은 시간동안 과도한 전기를 발생시킴으로써 일어나는 신경계의 발작적 증상으로 배경 활동파와는 구별되는 극파, 예파, 예파와 서파를 동반한 극서파 복합(sharp and slow complexes)의 뇌파 특징파를 갖는다. 장시간의 뇌파기록에서 시간의 절약과, 정량화를 위해 컴퓨터를 이용한 간질 파형의 자동 검출은 객관성을 높이고 정량적인 해석을 위해 필수적이다. 본 연구에서는 간질 뇌파를 검출하기 위해 웨이브렛 변환과 신경망을 사용하였다. 웨이브렛 변환은 잡음을 제거하고 간질 뇌파의 특징을 강조하며 신경망의 입력노드수를 줄였다. 전문가에 의해서 분류된 간질특성과 정상뇌파를 신경망에 입력시켜 최적의 신경망구조를 선택하였고, 검출 문턱치를 설정하였다. 신경망은 200ms(26개의 데이터포인트)신호의 웨이브렛 결과와 웨이브렛 변환후 데이터 상의 최대, 최소 기울기가 입력되어 전체 28개의 입력 노드로 구성하였다. 은닉층은 18노드, 문턱치값은 민감도와 선택도가 일치하는 0.65가 사용되었다. 결과로 임상 환자 데이터에 입력되어 78.54% 의 검출률을 보였다.

  • PDF

A Study on the EMI Signal Analysis and Denoising Using a Wavelet Transform (웨이브렛 변환을 이용한 EMI 신호해석 및 잡음제거에 관한 연구)

  • 윤기방;박제헌;김기두
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.37-45
    • /
    • 1998
  • In this paper, the different frequency component and time informations from an EMI signal are extracted simultaneously using a wavelet transform and the results of transform in the time and frequency domain are analyzed. Frequencies are extracted from the EMI signal by performing the multiresolution analysis using the Daubechies-4 filter coefficients and the time information through the results of wavelet transform. We have tried the correlation analysis to evaluate the results of wavelet transform. We have chosen the optimal wavelet function for an object signal by comparing the transformed results of various wavelet functions and verified the simulation examples of waveform and harmonic analysis using a wavelet transform. We have proved the denoising effect to the EMI signal using the soft thresholding technique.

  • PDF

Noise Reduction and Characteristic Points Detectoin of ECG Signal using Wavelet Transforms (웨이브렛 변환을 이용한 ECG신호의 잡음제거와 특징점 검출)

  • 장두봉;이상민;신태민;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1998
  • One of the main techniques for diagnosing heart disease is by examining the electrocardiogram(ECG). Many studies on detecting the QRS complex, p, and T waves have been performed because meaningful information is contained in these parameters. However, the earlier detecting techniques can not effectively extract those parameters from the ECG that is severely contaminated by noise source. In this paper, we performed the extracting parameters from and recovering the ECG signal using wavelets transform that has recently been applying to various fields.

  • PDF

Design of A Wavelet Interpolation Filter for Elimination of Muscle Artifact in the Stress ECG (스트레스 심전도의 근잡음 제거를 위한 Wavelet Interpolation Filter의 설계)

  • 박광리;이경중;이병채;정기삼;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.495-503
    • /
    • 2000
  • 스트레스 심전계에서 발생되는 근잡음을 제거하기 위하여 wavelet interpolation filter(WIF)를 설계하였다. WIF는 크게 웨이브렛 변환부와 보간법 적용부로 구성되어 있다. 웨이브렛 변환부는 Haar 웨이브렛을 이용하였으며 심전도 저주파 영역과 고주파 영역으로 분할하는 과정이다. 보간법 적용부에서는 분할되어진 신호 중 A3을 선택하여 신호의 재생 성능을 향상시키기 위하여 보간법을 적용하였다. WIF의 성능을 평가하기 위해서 신호대 잡음비, 재생신호 자승오차 및 표준편차의 파라미터를 이용하였다. 본 실험에서는 MIT/BIH 부정맥 데이터베이스, European ST-T 데이터베이스 및 삼각파형을 이용하여 성능 파라미터를 측정하였다. 결과적으로 WIF는 성능 파라미터에서 기존에 많이 사용되고 있는 평균값 필터, 중간값 필터 및 hard thresholding 방법에 비해 우수함을 알 수 있었다.

  • PDF

Fourier and Wavelet Analysis for Detection of Sleep Stage EEG (수면단계 뇌파 검출을 위한 Fourier 와 Wavelet해석)

  • Seo Hee-Don;Kim Min-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.487-494
    • /
    • 2003
  • The sleep stages provides the most basic evidence for diagnosing a variety of sleep diseases. for staging sleep by analysis of EEG(electroencephalogram), it is especially important to detect the characteristic waveforms from EEG. In this paper, sleep EEG signals were analyzed using Fourier transform and continuous wavelet transform as well as discrete wavelet transform. Proposeed system methods. Fourier and wavelet for detecting of important characteristic waves(hump, sleep spindles. K-complex, hill wave, ripple wave) in sleep EEG. Sleep EEG data were analysed using Daubechies wavelet transform method and FFT method. As a result of simulation, we suggest that our neural network system attain high performance in classification of characteristic waves.

Study on Noise Reduction of ECG Signal using Wavelets Transform (심전도신호의 잡음제거를 위한 웨이브렛변환의 적용에 관한 연구)

  • Chang, Doo-Bong;Lee, Sang-Min;Shin, Tae-Min;Lee, Gun-Ki
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.39-46
    • /
    • 1998
  • One of the main techniques for diagnosing heart disease is by examining the electrocardiogram(ECG). Many studies on detecting the QRS complex, P, and T waves have been performed because meaningful information is contained in these parameters. However, the earlier detection techniques can not effectively extract those parameters from the ECG that is severely contaminated by noise source. In this paper, we performed the extracting parameters from and recovering the ECG signal using wavelets transform that has recently been applying to various fields.

  • PDF

A Study on Frequency-Time Plane Analysis of Wavelet (웨이브렛의 주파수-시간 평면 해석에 관한 연구)

  • Bae, Sang-Bum;Ryu, Ji-Goo;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.451-454
    • /
    • 2005
  • Recently, many methods to analyze signal have been proposed and representative methods are the Fourier transform and wavelet transform. In these methods, the Fourier transform represents signal with combination cosine and sine at all locations in the frequency domain. However, it doesn't provide time information that particular frequency occurs in signal and depends on only the global feature of the signal. So, to improve these points the wavelet transform which is capable of multiresolution analysis has been applied to many fields such as speech processing, image processing and computer vision. And the wavelet transform, which uses changing window according to scale parameter, presents time-frequency localization. In this paper, we proposed a new approach using a wavelet of cosine and sine type and analyzed features of signal in a limited point of frequency-time plane.

  • PDF