• 제목/요약/키워드: 원본 학습 데이터

검색결과 86건 처리시간 0.029초

개선된 퍼지 연상 메모리를 이용한 영상 복원 (Image Restoration using Enhanced Fuzzy Associative Memory)

  • 조서영;민지희;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.133-135
    • /
    • 2004
  • 신경 회로망에서 연상 메모리(Associative Memory)는 주어진 자료에 대해 정보를 저장하고 복원하는 알고리즘이다. 본 논문에서는 학습된 영상의 정확한 분류와 왜곡된 영상의 복원 및 분류를 위해 기존의 퍼지 연상 메모리 알고리즘을 개선하였다. 기존의 퍼지 연상 메모리는 학습 데이터와 학습 원본과 같은 입력에 대해 우수한 복원 성능을 보이나 학습 데이터의 수가 증가할수록 그리고 왜곡된 입력에 대해 정확히 출력할 수 없고 복원 성능도 저하된다. 따라서 본 논문에서는 기존의 퍼지 연상 메모리 알고리즘을 개선하여 왜곡된 입력에 대해서도 원본 학습 데이터를 정확히 출력하고 복원하는 개선된 퍼지 연상 메모리 알고리즘을 제안하였다.

  • PDF

블록체인 기반 연합학습을 위한 레퍼런스 아키텍처 (A Reference Architecture for Blockchain-based Federated Learning)

  • 고은수;문종현;이광기;손채봉
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.119-122
    • /
    • 2022
  • 연합학습은, 데이터 샘플을 보유하는 다수의 분산 에지 디바이스 또는 서버들이 원본 데이터를 공유하지 않고 기계학습 문제를 해결하기 위해 협력하는 기술로서, 각 클라이언트는 소유한 원본 데이터를 로컬모델 학습에만 사용함으로써, 데이터 소유자의 프라이버시를 보호하고, 데이터 소유 및 활용의 파편화 문제를 해결할 수 있다. 연합학습을 위해서는 통계적 이질성 및 시스템적 이질성 문제 해결이 필수적이며, 인공지능 모델 정확도와 시스템 성능을 향상하기 위한 다양한 연구가 진행되고 있다. 최근, 중앙서버 의존형 연합학습의 문제점을 극복하고, 데이터 무결성 및 추적성과 데이터 소유자 및 연합학습 참여자에게 보상을 효과적으로 제공하기 위한, 블록체인 융합 연합학습기술이 주목받고 있다. 본 연구에서는 이더리움 기반 블록체인 인프라와 호환되는 연합학습 레퍼런스 아키텍처를 정의 및 구현하고, 해당 아키텍처의 실용성과 확장성을 검증하기 위하여 대표적인 연합학습 알고리즘과 데이터셋에 대한 실험을 수행하였다.

  • PDF

복수 대규모 언어 모델에 기반한 제어 가능형 데이터 증강 프레임워크 (Controllable data augmentation framework based on multiple large-scale language models)

  • 강현석;남궁혁;정지수;정상근
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 2023
  • 데이터 증강은 인공지능 모델의 학습에서 필요한 데이터의 양이 적거나 편향되어 있는 경우, 이를 보완하여 모델의 성능을 높이는 데 도움이 된다. 이미지와는 달리 자연어의 데이터 증강은 문맥이나 문법적 구조와 같은 특징을 고려해야 하기 때문에, 데이터 증강에 많은 인적자원이 소비된다. 본 연구에서는 복수의 대규모 언어 모델을 사용하여 입력 문장과 제어 조건으로 프롬프트를 구성하는 데 최소한의 인적 자원을 활용한 의미적으로 유사한 문장을 생성하는 방법을 제안한다. 또한, 대규모 언어 모델을 단독으로 사용하는 것만이 아닌 병렬 및 순차적 구조로 구성하여 데이터 증강의 효과를 높이는 방법을 제안한다. 대규모 언어 모델로 생성된 데이터의 유효성을 검증하기 위해 동일한 개수의 원본 훈련 데이터와 증강된 데이터를 한국어 모델인 KcBERT로 다중 클래스 분류를 수행하였을 때의 성능을 비교하였다. 다중 대규모 언어 모델을 사용하여 데이터 증강을 수행하였을 때, 모델의 구조와 관계없이 증강된 데이터는 원본 데이터만을 사용하였을 때보다 높거나 그에 준하는 정확도를 보였다. 병렬 구조의 다중 대규모 언어 모델을 사용하여 400개의 원본 데이터를 증강하였을 때에는, 원본 데이터의 최고 성능인 0.997과 0.017의 성능 차이를 보이며 거의 유사한 학습 효과를 낼 수 있음을 보였다.

  • PDF

학습데이터 증폭 소프트웨어 개발 (Development of dataset amplification software)

  • 서경덕;고석주;신재원;박형석;조성윤;김경래
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.664-666
    • /
    • 2020
  • 데이터의 다양성은 학습에 따른 모델의 성능을 좌지우지하는 중요한 요소이다. 그렇기 때문에 많은 양의 데이터를 확보하는 것은 학습에 있어서 아주 중요하다. 하지만, 데이터를 수집하는 것은 시간과 비용이 많이 드는 단계 중 하나이다. 본 논문에서는 제한된 데이터를 가지고 이미지 처리를 거쳐 대량의 데이터로 증폭시켜 많은 양의 데이터를 확보하는 과정에 대해 제안한다. 가지고 있는 YOLOv4용 학습 데이터 셋을 활용하여 사용자로부터 입력받은 확대/축소 비율, 각도로 데이터를 변형하고, 이렇게 추가로 생성된 데이터 셋을 기존 학습 데이터 셋에 재포함시키는 소프트웨어를 개발하는 것을 목표로 한다. 구현된 소프트웨어로 증폭된 대량의 데이터 셋을 다시 원본 학습 데이터 셋에 추가하고, 같은 영상에 대해서 원본 데이터 셋만 학습시킨 경우의 객체 검출 결과와 증폭된 학습 데이터 셋이 포함된 데이터 셋의 경우의 객체 검출 결과를 비교하여 그 성능을 검증하고 분석하도록 한다.

  • PDF

AutoEncoder 기반 역난독화 사전학습 및 전이학습을 통한 악성코드 탐지 방법론 (Malware detection methodology through on pre-training and transfer learning for AutoEncoder based deobfuscation)

  • 장재석;구본재;엄성준;한지형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.905-907
    • /
    • 2022
  • 악성코드를 분석하는 기존 기법인 정적분석은 빠르고 효율적으로 악성코드를 탐지할 수 있지만 난독화된 파일에 취약한 반면,, 동적분석은 난독화된 파일에 적합하지만 느리고 비용이 많이 든다는 단점을 가진다. 본 연구에서는 두 분석 기법의 단점을 해결하기 위해 딥러닝 모델을 활용한 난독화에 강한 정적분석 모델을 제안하였다. 본 연구에서 제안한 방법은 원본 코드 및 난독화된 파일을 grayscale 이미지로 변환하여 데이터셋을 구축하고 AutoEncoder 를 사전학습시켜 encoder 가 원본 파일과 난독화된 파일로부터 원본 파일의 특징을 추출할 수 있도록 한 이후, encoder 의 output 을 fully connected layer 의 입력으로 넣고 전이학습시켜 악성코드를 탐지하도록 하였다. 본 연구에서는 제안한 방법론은 난독화된 파일에서 악성코드를 탐지하는 성능을 F1 score 기준 14.17% 포인트 향상시켰고, 난독화된 파일과 원본 파일을 전체를 합친 데이터셋에서도 악성코드 탐지 성능을 F1 score 기준 7.22% 포인트 향상시켰다.

객체 바운딩 박스와 원본 이미지 결합을 이용한 합성 데이터 생성 기법 (Synthetic data generation technique using object bounding box and original image combination)

  • 이주혁;김미희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.476-478
    • /
    • 2023
  • 딥러닝은 컴퓨터 비전의 상당한 발전을 기여했지만, 딥러닝 모델을 학습하려면 대규모 데이터 세트가 필요하다. 이를 해결하기 위해 데이터 증강 기술이 주목받고 있다. 본 논문에서는 객체 추출 바운딩 박스와 원본 이미지의 바운딩 박스를 결합하여 합성 데이터 생성기법을 제안한다. 원본 이미지와 동일한 범주의 데이터셋에서 참조 이미지의 객체를 추출한 다음 생성 모델을 사용하여 참조 이미지와 원본 이미지의 특징을 통합하여 새로운 합성 이미지를 만든다. 실험을 통해, 생성 기법을 통한 딥러닝 모델의 성능향상을 보여준다.

이산 코사인 변환 기반 Gradient Leakage 방어 기법 (Gradient Leakage Defense Strategy based on Discrete Cosine Transform)

  • 박재훈;김광수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.2-4
    • /
    • 2021
  • 분산된 환경에서 머신 러닝의 학습 가중치를 공유하여 학습하는 방법은 훈련 데이터를 직접 공유하는 것이 아니기 때문에 안전한 것으로 여겨졌다. 하지만, 최근 연구에 따르면 악의적인 공격자가 공유된 가중치를 분석하여 원본 데이터를 완벽하게 복원할 수 있는 취약점이 발견되었다. Gradient Leakage Attack은 이러한 취약점을 이용해 훈련 데이터를 복원하는 공격 기법이다. 본 연구에서는 개별 장치에서 학습을 진행하고 가중치를 서버와 공유하는 학습 환경인 연합 학습 환경에서 해당 공격을 방어하기 위해 이산 코사인 변환에 기반한 이미지 변환 기법을 제시한다. 실험 결과, 우리의 이미지 변환 기법을 적용하면 공유된 가중치로부터 원본 데이터를 완벽하게 복원할 수 없다.

  • PDF

NoN-IID MNIST 데이터의 연합학습 연구 (A Study on Federated Learning of Non-IID MNIST Data)

  • 이주원;방준일;백종우;김화종
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.533-534
    • /
    • 2023
  • 본 논문에서는 불균형하게 분포된(Non-IID) 데이터를 소유하고 있는 데이터 소유자(클라이언트)들을 가정하고, 데이터 소유자들 간 원본 데이터의 직접적인 이동 없이도 딥러닝 학습이 가능하도록 연합학습을 적용하였다. 실험 환경 구성을 위하여 MNIST 손글씨 데이터 세트를 하나의 숫자만 다량 보유하도록 분할하고 각 클라이언트에게 배포하였다. 연합학습을 적용하여 손글씨 분류 모델을 학습하였을 때 정확도는 85.5%, 중앙집중식 학습모델의 정확도는 90.2%로 연합학습 모델이 중앙집중식 모델 대비 약 95% 수준의 성능을 보여 연합학습 시 성능 하락이 크지 않으며 특수한 상황에서 중앙집중식 학습을 대체할 수 있음을 보였다.

  • PDF

생성모델의 시각적 최적화를 위한 학습데이터 제작기법 (Learning data production technique for visual optimization of generative models)

  • 조형래;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.13-14
    • /
    • 2021
  • 본 논문은 생성모델의 학습데이터 제작기법에 대한 실험 및 결과와 향후 관련 연구의 방향을 기술한다. GAN으로 대표되는 생성모델이 아티스트에게 얼마만큼의 만족도와 영감을 주는지를 비교 실험 및 평가하기 위해서는 정제된 학습데이터가 필요하다. 하지만 현실적으로 아티스트의 작품은 데이터 세트를 만들기에는 그 수가 적고 인공지능이 학습하기에도 정제되어있지 않다. 2차 가공작업을 통하여 아티스트의 원본 작업과 유사한 데이터 세트의 구축은 생성모델의 성능향상을 위해 매우 중요하다. 연구의 결과 생성모델이 표현하기 어려운 스타일의 작가 작품을 선정한 뒤 최적의 학습데이터를 만들기 위한 다양한 실험과 기법을 통해 구축한 데이터 세트를 생성모델 알고리즘에 적용하고 실험을 통해 창작자의 작품제작 의도인 작가 진술에 최대한 유사한 이미지의 생성과 더 나아가 작가가 생각하지 못했던 창조적 모방의 결과물을 도출하였고 작가평가를 통해 높은 만족도를 얻었다.

  • PDF

A Design and Implementation of Missing Person Identification System using face Recognition

  • Shin, Jong-Hwan;Park, Chan-Mi;Lee, Heon-Ju;Lee, Seoung-Hyeon;Lee, Jae-Kwang
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권2호
    • /
    • pp.19-25
    • /
    • 2021
  • 본 논문에서는 비전 기술과 딥러닝 기반의 얼굴인식을 통해 실종자를 식별하는 방법을 제안하였다. 모바일 디바이스에서 전송된 원본 이미지에 대해 얼굴인식에 적합하도록 이미지를 전처리한 후, 얼굴인식의 정확도 향상을 위한 이미지 데이터 증식과 CNN 기반 얼굴학습 및 검증을 통해 실종자를 인식하였다. 본 논문의 구현 결과를 이용하여 가상의 실종자 이미지를 식별한 결과, 원본 데이터와 블러 처리한 데이터를 함께 학습한 모델의 성능이 가장 우수하게 나왔다. 또한 사전학습된 가중치를 사용한 학습 모델은 사용하지 않은 모델보다 높은 성능을 보였지만, 편향과 분산이 높게 나오는 한계를 확인할 수 있었다.