• Title/Summary/Keyword: 원본 학습 데이터

Search Result 86, Processing Time 0.028 seconds

Image Restoration using Enhanced Fuzzy Associative Memory (개선된 퍼지 연상 메모리를 이용한 영상 복원)

  • 조서영;민지희;김광백
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.133-135
    • /
    • 2004
  • 신경 회로망에서 연상 메모리(Associative Memory)는 주어진 자료에 대해 정보를 저장하고 복원하는 알고리즘이다. 본 논문에서는 학습된 영상의 정확한 분류와 왜곡된 영상의 복원 및 분류를 위해 기존의 퍼지 연상 메모리 알고리즘을 개선하였다. 기존의 퍼지 연상 메모리는 학습 데이터와 학습 원본과 같은 입력에 대해 우수한 복원 성능을 보이나 학습 데이터의 수가 증가할수록 그리고 왜곡된 입력에 대해 정확히 출력할 수 없고 복원 성능도 저하된다. 따라서 본 논문에서는 기존의 퍼지 연상 메모리 알고리즘을 개선하여 왜곡된 입력에 대해서도 원본 학습 데이터를 정확히 출력하고 복원하는 개선된 퍼지 연상 메모리 알고리즘을 제안하였다.

  • PDF

A Reference Architecture for Blockchain-based Federated Learning (블록체인 기반 연합학습을 위한 레퍼런스 아키텍처)

  • Goh, Eunsu;Mun, Jong-Hyeon;Lee, Kwang-Kee;Sohn, Chae-bong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.119-122
    • /
    • 2022
  • 연합학습은, 데이터 샘플을 보유하는 다수의 분산 에지 디바이스 또는 서버들이 원본 데이터를 공유하지 않고 기계학습 문제를 해결하기 위해 협력하는 기술로서, 각 클라이언트는 소유한 원본 데이터를 로컬모델 학습에만 사용함으로써, 데이터 소유자의 프라이버시를 보호하고, 데이터 소유 및 활용의 파편화 문제를 해결할 수 있다. 연합학습을 위해서는 통계적 이질성 및 시스템적 이질성 문제 해결이 필수적이며, 인공지능 모델 정확도와 시스템 성능을 향상하기 위한 다양한 연구가 진행되고 있다. 최근, 중앙서버 의존형 연합학습의 문제점을 극복하고, 데이터 무결성 및 추적성과 데이터 소유자 및 연합학습 참여자에게 보상을 효과적으로 제공하기 위한, 블록체인 융합 연합학습기술이 주목받고 있다. 본 연구에서는 이더리움 기반 블록체인 인프라와 호환되는 연합학습 레퍼런스 아키텍처를 정의 및 구현하고, 해당 아키텍처의 실용성과 확장성을 검증하기 위하여 대표적인 연합학습 알고리즘과 데이터셋에 대한 실험을 수행하였다.

  • PDF

Controllable data augmentation framework based on multiple large-scale language models (복수 대규모 언어 모델에 기반한 제어 가능형 데이터 증강 프레임워크)

  • Hyeonseok Kang;Hyuk Namgoong;Jeesu Jung;Sangkeun Jung
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.3-8
    • /
    • 2023
  • 데이터 증강은 인공지능 모델의 학습에서 필요한 데이터의 양이 적거나 편향되어 있는 경우, 이를 보완하여 모델의 성능을 높이는 데 도움이 된다. 이미지와는 달리 자연어의 데이터 증강은 문맥이나 문법적 구조와 같은 특징을 고려해야 하기 때문에, 데이터 증강에 많은 인적자원이 소비된다. 본 연구에서는 복수의 대규모 언어 모델을 사용하여 입력 문장과 제어 조건으로 프롬프트를 구성하는 데 최소한의 인적 자원을 활용한 의미적으로 유사한 문장을 생성하는 방법을 제안한다. 또한, 대규모 언어 모델을 단독으로 사용하는 것만이 아닌 병렬 및 순차적 구조로 구성하여 데이터 증강의 효과를 높이는 방법을 제안한다. 대규모 언어 모델로 생성된 데이터의 유효성을 검증하기 위해 동일한 개수의 원본 훈련 데이터와 증강된 데이터를 한국어 모델인 KcBERT로 다중 클래스 분류를 수행하였을 때의 성능을 비교하였다. 다중 대규모 언어 모델을 사용하여 데이터 증강을 수행하였을 때, 모델의 구조와 관계없이 증강된 데이터는 원본 데이터만을 사용하였을 때보다 높거나 그에 준하는 정확도를 보였다. 병렬 구조의 다중 대규모 언어 모델을 사용하여 400개의 원본 데이터를 증강하였을 때에는, 원본 데이터의 최고 성능인 0.997과 0.017의 성능 차이를 보이며 거의 유사한 학습 효과를 낼 수 있음을 보였다.

  • PDF

Development of dataset amplification software (학습데이터 증폭 소프트웨어 개발)

  • Seo, Kyeong-Deok;Koh, Seok-Joo;Shin, Jae-Won;Park, Hyung-Seok;Joe, Seong-Yoon;Kim, Kyeong-Rae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.664-666
    • /
    • 2020
  • 데이터의 다양성은 학습에 따른 모델의 성능을 좌지우지하는 중요한 요소이다. 그렇기 때문에 많은 양의 데이터를 확보하는 것은 학습에 있어서 아주 중요하다. 하지만, 데이터를 수집하는 것은 시간과 비용이 많이 드는 단계 중 하나이다. 본 논문에서는 제한된 데이터를 가지고 이미지 처리를 거쳐 대량의 데이터로 증폭시켜 많은 양의 데이터를 확보하는 과정에 대해 제안한다. 가지고 있는 YOLOv4용 학습 데이터 셋을 활용하여 사용자로부터 입력받은 확대/축소 비율, 각도로 데이터를 변형하고, 이렇게 추가로 생성된 데이터 셋을 기존 학습 데이터 셋에 재포함시키는 소프트웨어를 개발하는 것을 목표로 한다. 구현된 소프트웨어로 증폭된 대량의 데이터 셋을 다시 원본 학습 데이터 셋에 추가하고, 같은 영상에 대해서 원본 데이터 셋만 학습시킨 경우의 객체 검출 결과와 증폭된 학습 데이터 셋이 포함된 데이터 셋의 경우의 객체 검출 결과를 비교하여 그 성능을 검증하고 분석하도록 한다.

  • PDF

Malware detection methodology through on pre-training and transfer learning for AutoEncoder based deobfuscation (AutoEncoder 기반 역난독화 사전학습 및 전이학습을 통한 악성코드 탐지 방법론)

  • Jang, Jae-Seok;Ku, Bon-Jae;Eom, Sung-Jun;Han, Ji-Hyeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.905-907
    • /
    • 2022
  • 악성코드를 분석하는 기존 기법인 정적분석은 빠르고 효율적으로 악성코드를 탐지할 수 있지만 난독화된 파일에 취약한 반면,, 동적분석은 난독화된 파일에 적합하지만 느리고 비용이 많이 든다는 단점을 가진다. 본 연구에서는 두 분석 기법의 단점을 해결하기 위해 딥러닝 모델을 활용한 난독화에 강한 정적분석 모델을 제안하였다. 본 연구에서 제안한 방법은 원본 코드 및 난독화된 파일을 grayscale 이미지로 변환하여 데이터셋을 구축하고 AutoEncoder 를 사전학습시켜 encoder 가 원본 파일과 난독화된 파일로부터 원본 파일의 특징을 추출할 수 있도록 한 이후, encoder 의 output 을 fully connected layer 의 입력으로 넣고 전이학습시켜 악성코드를 탐지하도록 하였다. 본 연구에서는 제안한 방법론은 난독화된 파일에서 악성코드를 탐지하는 성능을 F1 score 기준 14.17% 포인트 향상시켰고, 난독화된 파일과 원본 파일을 전체를 합친 데이터셋에서도 악성코드 탐지 성능을 F1 score 기준 7.22% 포인트 향상시켰다.

Synthetic data generation technique using object bounding box and original image combination (객체 바운딩 박스와 원본 이미지 결합을 이용한 합성 데이터 생성 기법)

  • Ju-Hyeok Lee;Mi-Hui Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.476-478
    • /
    • 2023
  • 딥러닝은 컴퓨터 비전의 상당한 발전을 기여했지만, 딥러닝 모델을 학습하려면 대규모 데이터 세트가 필요하다. 이를 해결하기 위해 데이터 증강 기술이 주목받고 있다. 본 논문에서는 객체 추출 바운딩 박스와 원본 이미지의 바운딩 박스를 결합하여 합성 데이터 생성기법을 제안한다. 원본 이미지와 동일한 범주의 데이터셋에서 참조 이미지의 객체를 추출한 다음 생성 모델을 사용하여 참조 이미지와 원본 이미지의 특징을 통합하여 새로운 합성 이미지를 만든다. 실험을 통해, 생성 기법을 통한 딥러닝 모델의 성능향상을 보여준다.

Gradient Leakage Defense Strategy based on Discrete Cosine Transform (이산 코사인 변환 기반 Gradient Leakage 방어 기법)

  • Park, Jae-hun;Kim, Kwang-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.2-4
    • /
    • 2021
  • In a distributed machine learning system, sharing gradients was considered safe because it did not share original training data. However, recent studies found that malicious attacker could completely restore the original training data from shared gradients. Gradient Leakage Attack is a technique that restoring original training data by exploiting theses vulnerability. In this study, we present the image transformation method based on Discrete Cosine Transform to defend against the Gradient Leakage Attack on the federated learning setting, which training in local devices and sharing gradients to the server. Experiment shows that our image transformation method cannot be completely restored the original data from Gradient Leakage Attack.

  • PDF

A Study on Federated Learning of Non-IID MNIST Data (NoN-IID MNIST 데이터의 연합학습 연구)

  • Joowon Lee;Joonil Bang;Jongwoo Baek;Hwajong Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.533-534
    • /
    • 2023
  • 본 논문에서는 불균형하게 분포된(Non-IID) 데이터를 소유하고 있는 데이터 소유자(클라이언트)들을 가정하고, 데이터 소유자들 간 원본 데이터의 직접적인 이동 없이도 딥러닝 학습이 가능하도록 연합학습을 적용하였다. 실험 환경 구성을 위하여 MNIST 손글씨 데이터 세트를 하나의 숫자만 다량 보유하도록 분할하고 각 클라이언트에게 배포하였다. 연합학습을 적용하여 손글씨 분류 모델을 학습하였을 때 정확도는 85.5%, 중앙집중식 학습모델의 정확도는 90.2%로 연합학습 모델이 중앙집중식 모델 대비 약 95% 수준의 성능을 보여 연합학습 시 성능 하락이 크지 않으며 특수한 상황에서 중앙집중식 학습을 대체할 수 있음을 보였다.

  • PDF

Learning data production technique for visual optimization of generative models (생성모델의 시각적 최적화를 위한 학습데이터 제작기법)

  • Cho, Hyeongrae;Park, Gooman
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.13-14
    • /
    • 2021
  • 본 논문은 생성모델의 학습데이터 제작기법에 대한 실험 및 결과와 향후 관련 연구의 방향을 기술한다. GAN으로 대표되는 생성모델이 아티스트에게 얼마만큼의 만족도와 영감을 주는지를 비교 실험 및 평가하기 위해서는 정제된 학습데이터가 필요하다. 하지만 현실적으로 아티스트의 작품은 데이터 세트를 만들기에는 그 수가 적고 인공지능이 학습하기에도 정제되어있지 않다. 2차 가공작업을 통하여 아티스트의 원본 작업과 유사한 데이터 세트의 구축은 생성모델의 성능향상을 위해 매우 중요하다. 연구의 결과 생성모델이 표현하기 어려운 스타일의 작가 작품을 선정한 뒤 최적의 학습데이터를 만들기 위한 다양한 실험과 기법을 통해 구축한 데이터 세트를 생성모델 알고리즘에 적용하고 실험을 통해 창작자의 작품제작 의도인 작가 진술에 최대한 유사한 이미지의 생성과 더 나아가 작가가 생각하지 못했던 창조적 모방의 결과물을 도출하였고 작가평가를 통해 높은 만족도를 얻었다.

  • PDF

A Design and Implementation of Missing Person Identification System using face Recognition

  • Shin, Jong-Hwan;Park, Chan-Mi;Lee, Heon-Ju;Lee, Seoung-Hyeon;Lee, Jae-Kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • In this paper proposes a method of finding missing persons based on face-recognition technology and deep learning. In this paper, a real-time face-recognition technology was developed, which performs face verification and improves the accuracy of face identification through data fortification for face recognition and convolutional neural network(CNN)-based image learning after the pre-processing of images transmitted from a mobile device. In identifying a missing person's image using the system implemented in this paper, the model that learned both original and blur-processed data performed the best. Further, a model using the pre-learned Noisy Student outperformed the one not using the same, but it has had a limitation of producing high levels of deflection and dispersion.