• Title/Summary/Keyword: 원공 평판

Search Result 10, Processing Time 0.031 seconds

The Calculation of Stress Intensity Factors in the Orthotropic Elastic Plate with the Cracked Circular-hole using a Contour Integral Method (경로적분법에 의한 원공크랙이 있는 직교이방성 탄성평판의 응력 확대계수 계산)

  • Kim, Jin-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.136-145
    • /
    • 2005
  • 특이응력해석을 위한 일반화된 가역상반일 경계적분식이 섬유강화복합재를 모형화한 직교 이방성 크랙평판의 수치해를 위하여 발전시켰다. 이 적분방정식은 평판경계에서의 탄성변위와 트랙션의 변수로 구성된 경계적분식의 형태로 하중이 없다는 두 크랙면의 경계조건과 유한의 탄성변형에너지의 개념에서 경계적분식에 필요한 특성해를 규정하고 대응되는 보조해를 계산하였다. 대칭모우드 I형의 중앙원공크랙평판 및 복합모우드형의 반원편측크랙 일단고정평판의 응력확대계수가 임의의 섬유방향각에 따라서 계산되었다.

Optimization of a Membrane with a Center Hole using Natural Element Method and Genetic Algorithm (자연요소법과 유전자 알고리듬을 사용한 원공 평판의 최적설계)

  • Lee, Sang-Bum;Seong, Hwal-Gyeng;Cheon, Ho-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.105-114
    • /
    • 2008
  • Natural element method (NEM) is quick in research activities by natural sciences and mechanical engineering fields, and from which good results are watched by various engineering fields and applied too. However no paper or research about the applied case has announced yet. Therefore on this paper, I will rediscover an optimum design and apply NEM into other fields with NEM for existing optimum design of mainly using FEM. NEM and genetic algorithm (GA) are applied to optimize a membrane with a center hole. The optimal design obtained by NEM is compared to the counterpart obtained by the finite element method (FEM). Result by NEM is found to be better than the result by FEM. NEM can be a feasible analysis tool in design optimization.

Boundary Element Analysis of Plate with Crack Approaching Circular Holes (원공(圓孔)에 접근(接近)하는 균열(龜裂)이 있는 판(板)이 경계요소해석(境界要素解析))

  • Yang, Chang Hyun;Kim, Il Kon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.103-110
    • /
    • 1987
  • When a crack in the plate with a circular hole approaches to the hole, the large stress concentration phenomenon appears at the boundary of the circular hole and the crack tip. As a numerical analysis method for the stress concentration in a structure, the Finite Element Method has been used. In this paper, however, the Boundary Element Method is employed, which may reduce the numbers of input data and the calculating time when compared with the Finite Element Method. A finite flat plate having a crack between the two circular holes is chosen as a model in this study. The results by the Boundary Element Method are compared with those of the Boundary collocation Method by Newman, which are already well established. And the structural behavior near the circular hole and at the crack tip is also investigated.

  • PDF

Analysis of cracks emanating from a circular hole in an orthotropic infinite plate (直交 異方性 無限平版 內部의 圓孔周圍 龜裂 解析)

  • 정성균;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.895-903
    • /
    • 1987
  • This paper investigates the problem of cracks emanating from a circular hole in an orthotropic infinite plate. The mixed-mode stress intensity factors are obtained by using the modified mapping-collocation method. To investigate the effect of anisotropy and circular hole boundary on crack tip singularity, stress intensity factors are considered as functions of the normalized crack length for various types of laminated composite. The results indicate a strong dependence of the stress intensity factor on the material anisotropy and geometry.

Analysis of a Crack Approaching Two Circular Holes in an Orthotropic Infinite Plate (직교이방성 무한평판 내부의 두 원공사이에 존재하는 균열의 해석)

  • Cheong, S.K.;Hong, C.S.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1710-1718
    • /
    • 1993
  • This paper investigates the problem of a crack approaching two circular holes in an orthotropic infinite plate. The stress intensity factors were obtained by using the modified mapping-collocation method. The present results show excellent agreement with existing solutions for a crack approaching two circular holes in an isotropic infinite plate. In the numerical examples, various types of cross-ply laminated composites were considered. To investigate the effect of orthotropy and geometry(d/R and a/(d-R)) on crack tip singularity, stress intensity factors were considered as functions of the normalized crack length. It is expected that the modified mapping-collocation method can be applied to the analysis of various kinds of cracks existing around the stress-concentration region of composite laminate.

다축경편 복합재료 평판에서 기계적 체결시 발생하는 원공 주위의 응력분포

  • 최재민;조민규;전흥재;변준형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.56-56
    • /
    • 2004
  • 섬유강화 복합재료는 응용범위가 산업계 전반으로 빠르게 확대되고 있다. 개발 초기에는 하중을 감당하지 않는 이차 구조물에 주로 사용되어 왔으나, 점차 산업 전반의 I차 구조물(Primary Structure)에 쓰이는 등, 그 사용범위가 넓어지고 있으며, 취약한 두께방향 물성 향상의 필요성을 충족시키기 위해 다축경편(MWK) 복합재료에 대한 연구가 진행되고 있다. 본 논문에서는 다축경편(MWK) 복합재료의 기계적 체결부에 관한 응력해석을 연구하였다.(중략)

  • PDF

Effect of Various Parameters on Stress Distribution around Holes in Mechanically Fastened Composite Laminates (기계적으로 체결된 복합재료 평판에서 다양한 인자의 영향에 따른 원공 주위의 응력분포)

  • Choi Jae-Min;Chun Heoung-Jae;Byun Joon-Hyung
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • With the wide applications of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joints have become a very important research area because the joints are often the weakest areas in composite structures. This paper presents an analytical study of the stress distributions in mechanically single-fastened and multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a contact stress analysis are described. A dimensionless stress concentration factor is used to compare the stress distributions in composite laminates quantitatively In the case of single-pin loaded composite laminate, the effects of stacking sequence, the ratio of a hole diameter and the width of a laminate (W/D ratio), the ratio of hole diameter and distance from edge to hole (E/D ratio), friction coefficient and clamping force are considered. In the case of multi-pin loaded composite laminate, the influence of the number of pins, pitch distance, number of rows, row spacing and hole pattern are considered. The results show that P/D ratio and E/D ratio affect more on stress distributions near the hole boundary than the other factors. In the case of multi-pin loaded composite laminate, the stress concentration in the double column case is better than the other cases of multi-pin loaded composite laminate.

An Experimental Study on the Shear Buckling of a Composite Plate with Bead and Hole (비드와 원공을 갖는 복합재 평판의 전단 좌굴 실험에 관한 연구)

  • 임효식;김주언;황정선
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.146-154
    • /
    • 2000
  • Buckling behavior was studied for the square plate with bead and hole under shear load. Plates were made to examine the effect of bead and hole to the material, aluminum and composite, the effect of flange angle, bead height and bead radius of curvature. There was little difference between buckling loads obtained by the experiment and Rayleigh-Ritz method to the plate. Buckling load could be increased highly when stress concentration to the hole was dispersed effectively using flange. A well-designed plate using bead and flange showed 3 times as much as stiffness to the plate without bead and flange.

  • PDF

P-Version Model of Stress Concentration Around a Circular Hole in Finite Strips (원공(圓孔)을 갖는 유한판(有限板)의 응력집중(應力集中)에 대한 P-Version 모델)

  • Woo, Kwang Sung;Lee, Chae Gyu;Yun, Young Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.1-8
    • /
    • 1992
  • This paper presents a p-version finite element approach for modeling the stress distribution around a circular hole in a finite strip subjected to membrane and flexural behaviors. Also, same problem with a crack emanating from a perforated tension strip was solved by virtual crack extension method. The p-version of the finite element method based on integrals of Legendre polynomials is shown to perform very well for modeling geometries with very steep stress gradients in the vicinity of a circular cutout. Here, the transfinite mapping technique for circular boundaries was used to avoid the discretization errors. The numerical results from the proposed scheme have a good comparison with those by Nisida, Howland, Newman etc. and the conventional finite element approach.

  • PDF

Self-Diagnosis of Damage in Carbon Fiber Reinforced Composites Using Electrical Residual Resistance Measurement (잉여 전기 저항 측정을 이용한 탄소 섬유 강화 복합재의 파손 측정)

  • Kang, Ji-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.323-330
    • /
    • 2009
  • The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in-situ damage detection and sensing in carbon fiber reinforced plastic(CFRP) composites. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. A quasi-isotropic panel was manufactured and electrical resistance was measured. Then three different sizes of holes were drilled at a chosen location. The panel was prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrodes. Vertical, horizontal, and diagonal pairs of electrodes were chosen and the resistance was measured. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.