• Title/Summary/Keyword: 원격학습

Search Result 732, Processing Time 0.391 seconds

Analyzing Students' Non-face-to-face Course Evaluation by Topic Modeling and Developing Deep Learning-based Classification Model (토픽 모델링 기반 비대면 강의평 분석 및 딥러닝 분류 모델 개발)

  • Han, Ji Yeong;Heo, Go Eun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.4
    • /
    • pp.267-291
    • /
    • 2021
  • Due to the global pandemic caused by COVID-19 in 2020, there have been major changes in the education sites. Universities have fully introduced remote learning, which was considered as an auxiliary education, and non-face-to-face classes have become commonplace, and professors and students are making great efforts to adapt to the new educational environment. In order to improve the quality of non-face-to-face lectures amid these changes, it is necessary to study the factors affecting lecture satisfaction. Therefore, This paper presents a new methodology using big data to identify the factors affecting university lecture satisfaction changed before and after COVID-19. We use Topic Modeling method to analyze lecture reviews before and after COVID-19, and identify factors affecting lecture satisfaction. Through this, we suggest the direction for university education to move forward. In addition, we can identify the factors of satisfaction and dissatisfaction of lectures from multiangle by establishing a topic classification model with an F1-score of 0.84 based on KoBERT, a deep learning language model, and further contribute to continuous qualitative improvement of lecture satisfaction.

Smart Farm Control System for Improving Energy Efficiency (에너지 효율 향상을 위한 스마트팜 제어 시스템)

  • Choi, Minseok
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.331-337
    • /
    • 2021
  • The adaptation of smartfarm technology that converges ICT is increasing productivity and competitiveness in the agriculture. Technologies have been developed that enable environmental monitoring through various sensors and automatic control of the cultivation environment, and researches are underway to advance smartfarm technology using data generated from smartfarms. In this paper, an environmental control method to reduce the energy consumption of a smartfarm by using the environment and control data of the smartfarm is proposed. It was confirmed that energy consumption could be reduced compared to an independent environmental control method by creating an environmental prediction model using accumulated environmental data and selecting a control method to minimize energy consumption in a given situation by considering multiple environmental factors. In the future, research is needed to obtain higher energy efficiency through the advancement of the predictive model and the improvement of the complex control algorithms.

Atrous Residual U-Net for Semantic Segmentation in Street Scenes based on Deep Learning (딥러닝 기반 거리 영상의 Semantic Segmentation을 위한 Atrous Residual U-Net)

  • Shin, SeokYong;Lee, SangHun;Han, HyunHo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.45-52
    • /
    • 2021
  • In this paper, we proposed an Atrous Residual U-Net (AR-UNet) to improve the segmentation accuracy of semantic segmentation method based on U-Net. The U-Net is mainly used in fields such as medical image analysis, autonomous vehicles, and remote sensing images. The conventional U-Net lacks extracted features due to the small number of convolution layers in the encoder part. The extracted features are essential for classifying object categories, and if they are insufficient, it causes a problem of lowering the segmentation accuracy. Therefore, to improve this problem, we proposed the AR-UNet using residual learning and ASPP in the encoder. Residual learning improves feature extraction ability and is effective in preventing feature loss and vanishing gradient problems caused by continuous convolutions. In addition, ASPP enables additional feature extraction without reducing the resolution of the feature map. Experiments verified the effectiveness of the AR-UNet with Cityscapes dataset. The experimental results showed that the AR-UNet showed improved segmentation results compared to the conventional U-Net. In this way, AR-UNet can contribute to the advancement of many applications where accuracy is important.

Multivariate Outlier Removing for the Risk Prediction of Gas Leakage based Methane Gas (메탄 가스 기반 가스 누출 위험 예측을 위한 다변량 특이치 제거)

  • Dashdondov, Khongorzul;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.23-30
    • /
    • 2020
  • In this study, the relationship between natural gas (NG) data and gas-related environmental elements was performed using machine learning algorithms to predict the level of gas leakage risk without directly measuring gas leakage data. The study was based on open data provided by the server using the IoT-based remote control Picarro gas sensor specification. The naturel gas leaks into the air, it is a big problem for air pollution, environment and the health. The proposed method is multivariate outlier removing method based Random Forest (RF) classification for predicting risk of NG leak. After, unsupervised k-means clustering, the experimental dataset has done imbalanced data. Therefore, we focusing our proposed models can predict medium and high risk so best. In this case, we compared the receiver operating characteristic (ROC) curve, accuracy, area under the ROC curve (AUC), and mean standard error (MSE) for each classification model. As a result of our experiments, the evaluation measurements include accuracy, area under the ROC curve (AUC), and MSE; 99.71%, 99.57%, and 0.0016 for MOL_RF respectively.

Abnormal Detection for Industrial Control Systems Using Ensemble Recurrent Neural Networks Model (산업제어시스템에서 앙상블 순환신경망 모델을 이용한 비정상 탐지)

  • Kim, HyoSeok;Kim, Yong-Min
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.401-410
    • /
    • 2021
  • Recently, as cyber attacks targeting industrial control systems increase, various studies are being conducted on the detection of abnormalities in industrial processes. Considering that the industrial process is deterministic and regular, It is appropriate to determine abnormality by comparing the predicted value of the detection model from which normal data is trained and the actual value. In this paper, HAI Datasets 20.07 and 21.03 are used. In addition, an ensemble model is created by combining models that have applied different time steps to Gated Recurrent Units. Then, the detection performance of the single model and the ensemble recurrent neural networks model were compared through various performance evaluation analysis, and It was confirmed that the proposed model is more suitable for abnormal detection in industrial control systems.

Satisfaction with Online Classes Due to COVID-19 Pandemic (COVID-19로 인한 전면 온라인 수업에 대한 만족도)

  • Kim, Soo-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.118-127
    • /
    • 2021
  • This study aims to examine satisfaction of nursing students with online classes during first semester of 2020 after COVID-19 pandemic and the difference in satisfaction according to general and online-related characteristics. An online survey was conducted for all nursing students, and subsequently 627 responses were analyzed by t-test and ANOVA with SPSS WIN. Result reveals that students ability to use IT devices was above average, and most of them used laptop computers. Pre-recorded video lecture format was used the most, and improvement of online content was demanded the highest. Overall satisfaction with online classes was scored 3.0/5.0, with the highest satisfaction for anytime and anywhere learning, and the lowest satisfaction in recommending online classes to others. There were significant differences between self-evaluation on own grade, ability to use IT devices, format of online classes, and satisfaction about online classes. Through this study, it would be possible to suggest a plan to increase satisfaction of online class and basic data to establish university policy for online classes after COVID-19.

An Analysis of Changes and Features in the Revised North Korean Library Act (개정된 북한도서관법의 변화와 특징 분석)

  • Choi, Jae-Hwang;Yang, Sarah
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.2
    • /
    • pp.117-136
    • /
    • 2022
  • The purpose of this study is to derive implications by comparing and analyzing the North Korean Library Act both in 1999 and in 2012. In this study, the North Korean Library Act revised in 2012 compared to the previous North Korean Library Act in 1999, and the newly revised, deleted, and newly established items were analyzed by old/new phrase contrast method. While the North Korean Library Act revised in 1999 consisted of a total of 5 chapters and 45 articles, the North Korean Library Act revised in 2012 was reorganized into a total of 6 chapters and 58 articles. The main changes and features are the establishment and modification of provisions related to electronic libraries and electronic publications in accordance with changes in the information service environment, and new provisions related to training of library staff. Based on the analyzed results, the topics and fields that can be discussed in the future, such as mutual exchange of various learning contents for remote education, establishment of an information service cooperation system between South and North libraries, and training specialists on North Korean libraries.

Machine Learning-Based Malicious URL Detection Technique (머신러닝 기반 악성 URL 탐지 기법)

  • Han, Chae-rim;Yun, Su-hyun;Han, Myeong-jin;Lee, Il-Gu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.555-564
    • /
    • 2022
  • Recently, cyberattacks are using hacking techniques utilizing intelligent and advanced malicious codes for non-face-to-face environments such as telecommuting, telemedicine, and automatic industrial facilities, and the damage is increasing. Traditional information protection systems, such as anti-virus, are a method of detecting known malicious URLs based on signature patterns, so unknown malicious URLs cannot be detected. In addition, the conventional static analysis-based malicious URL detection method is vulnerable to dynamic loading and cryptographic attacks. This study proposes a technique for efficiently detecting malicious URLs by dynamically learning malicious URL data. In the proposed detection technique, malicious codes are classified using machine learning-based feature selection algorithms, and the accuracy is improved by removing obfuscation elements after preprocessing using Weighted Euclidean Distance(WED). According to the experimental results, the proposed machine learning-based malicious URL detection technique shows an accuracy of 89.17%, which is improved by 2.82% compared to the conventional method.

Soil moisture and agricultural drought index estimation based on synthetic aperture radar images for the next-generation water resources satellite application technology development (차세대 수자원위성 활용기술 개발을 위한 영상레이더 기반의 토양수분 및 농업적 가뭄지수 산정)

  • Seongjoon Kim;Jeehun Chung;Yonggwan Lee;Wonho Nam;Hyunhan Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.5-5
    • /
    • 2023
  • 제3차 우주개발 진흥 기본계획의 일환으로써 개발되는 차세대 중형위성 5호인 수자원위성은 수자원/수재해 감시 전용 위성으로 2025년 발사 예정이다. 수자원위성의 메인 센서인 C-band 영상레이더(Synthetic Aperture Radar, SAR)는 기상조건 및 주야 상관없이 지표면 관측이 가능한 센서로 급변하는 수재해 양상에 효과적으로 대응하기 위해 탑재된 센서이다. 본 연구사업은 차세대 수자원위성의 효과적 활용 방안 및 SAR 자료기반의 활용산출물 및 주제도 서비스를 위한 알고리즘 구조설계 및 표출시스템 시범개발을 목표로 하고 있으며, 홍수/가뭄/안전/환경모니터링을 주제로 수자원 및 원격탐사 분야의 다학제적 전문가들로 구성된 컨소시엄을 구성하여 추진하고 있다. 본 연구의 내용은 가뭄 모니터링을 위해 개발 중인 SAR 기반 토양수분과 농업적 가뭄지수 산정 알고리즘 개발 및 공간적 표출을 포함한다. 토양수분은 SAR 영상에서 지표피복별로 추출된 후방산란계수와 수문학적 개념의 융합을 통해 논/밭/산림에 대해 산정한다. 물리적 특성에 기반한 변화탐지모델을 활용해 토양수분량을 추출 후, 기계학습기법과 S C S - C N 방법에서 파생된 수문학적 개념 5일 선행강우량과 결합한 토양수분 산정 알고리즘을 개발하였다. 산정된 토양수분을 기반으로, 논 지역은 벼 재배에 따른 담수 시기를 고려한 토양의 포화/불포화상태, 밭 지역은 토양 종류에 따른 토양의 물리적 특성, 산림 지역은 수문학적 개념 및 식생지수를 활용하여 가뭄 판단 기준을 구축하고, 가뭄의 해갈 여부와 해갈되는 시점의 강우량을 산정 가능한 알고리즘을 개발하였다. 개발된 가뭄 모니터링 기법은 향후 고도화, 최적화 및 안정화를 통해 수자원위성의 핵심 활용기술로써 구현할 계획이다.

  • PDF

Analysis of Algal Bloom Occurrence Characteristics Namyang Lake using Sentinel-2 MSI (Sentinel-2 MSI를 활용한 남양 간척담수호의 조류발생 특성 분석)

  • Wonjin Jang;Jinuk Kim;Jiwan Lee;Yongeun Park;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.56-56
    • /
    • 2023
  • 남양호는 농업용수 공급을 위해 건설된 하구 담수호로 과도한 영양물질 축적으로 인해 매년 여름 녹조류가 번성한다. 따라서 본 연구에서는 조류발생 특성을 분석하고자 식물성 플랑크톤 및 관련 분해 산물에 의해 고유 광학특성을 가지고 있는 Chlorophyll-a(Chl-a)의 추정을 통한 녹조 발생을 파악하고자 Sentinel-2 Multi Spectral Image(MSI)의 원격 반사율 광학 스펙트럼을 사용하였다. Chl-a 추정알고리즘 개발을 위하여 Sentinel-2 A, B의 교차 방문주기인 5일 간격에 맞추어 현장수질자료(2022년: 27회 2023년: 27회)를 측정하였다. Chl-a 농도는 EXO-YSI를이용하여 측정하였으며 해당기간동안 9.4 ~ 127.1 mg/L의 범위를 보였으며, Sentine-2 자료는 A, B자료에서 B1(443 nm) ~ B8A(865 nm)파장의 값을 기상조건(구름, 안개, 강수)을 고려하여 현장수질측정 위치에서 반사도를 추출하였다. 입력자료는 대기 및 방사영향을 고려해 반사도 간의 비율자료와 선행연구에서 활용된 반사도를 활용하였으며 알고리즘은 다중선형회귀분석(Multi Linear Regression Model)과 Random Forest를 활용하였다. MLR의 경우 결정계수(R2)가 학습 및 검증에서 각각 0.68, 0.59의 성능을 보였으며, RF의 경우 각각 0.94, 0.85의 성능을 보였다. 해당알고리즘으로 생성된 Chl-a 시공간농도 자료는 담수호내 조류발생 특성을 분석하고 효율적 조류관리 및 대처에 활용될 것으로 판단된다.

  • PDF