잘피는 연안해역에 서식하는 해양수생관속식물로 해양생태계의 중요한 역할을 하고 있어, 주기적인 잘피 서식지의 모니터링이 이루어지고 있다. 최근 효율적인 잘피 서식지의 모니터링을 위해 고해상도의 영상 획득이 가능한 드론의 활용도가 높아지고 있다. 그리고 의미론적 분할에 있어 합성곱 신경망 기반의 딥러닝이 뛰어난 성능을 보임에 따라, 원격탐사 분야에 이를 적용한 연구가 활발하게 이루어지고 있다. 그러나 다양한 딥러닝 모델, 영상, 그리고 하이퍼파라미터에 의해 의미론적 분할의 정확도가 다르게 나타나고, 영상의 정규화와 타일과 배치 크기에서도 정형화되어 있지 않은 상태이다. 이에 따라 본 연구에서는 우수한 성능을 보여주는 딥러닝 모델을 이용하여 드론의 광학 영상에서 잘피 서식지를 분할하였다. 그리고 학습 자료의 정규화 및 타일의 크기를 중점으로 결과를 비교 및 분석하였다. 먼저 정규화와 타일, 배치 크기에 따른 결과 비교를 위해 흑백 영상을 만들고 흑백 영상을 Z-score 정규화 및 Min-Max 정규화 방법으로 변환한 영상을 사용하였다. 그리고 타일 크기를 특정 간격으로 증가시키면서 배치 크기는 메모리 크기를 최대한 사용할 수 있도록 하였다. 그 결과, Z-score 정규화가 적용된 영상이 다른 영상보다 IoU가 0.26 ~ 0.4 정도 높게 나타났다. 또한, 타일과 배치 크기에 따라 최대 0.09까지 차이가 나타나는 것을 확인하였다. 딥러닝을 이용한 의미론적 분할에 있어 정규화, 타일의 배치 크기의 변화에 따른 결과가 다르게 나타났다. 그러므로 실험을 통해 이들 요소에 대한 적합한 결정 과정이 있어야 함을 알 수 있었다.
우리나라는 대규모 산업단지와 대도시들이 연안에 집중되면서 연안의 오염이 날로 심각해지고 있다. 이러한 연안 오염을 모니터링하기 위해서 위성 영상을 이용한 연안 수질평가지수 모니터링 연구가 수행될 필요가 있다. 수질평가지수란 저층 산소포화도, 엽록소 농도, 투명도, 용존무기질소 및 용존무기인 농도를 수질평가 항목으로 구성하여 해양환경관리법에 따른 해양환경기준을 통해 해역별로 기준을 설정하여 산출하는 지수이다. 이 연구는 한반도 주변의 연안지역을 대상으로 2011년부터 2013년까지의 현장관측 자료 및 Geostationary Ocean Color Imager (GOCI) 위성 영상을 이용하여 연안 표층 해수에 대한 기계학습 기반의 두 가지 수질평가지수 추정 기법을 개발하였다. 첫 번째 방법으로는 GOCI 반사도를 이용하여 추정된 수질평가 항목들로 수질평가지수를 계산하였고, 두 번째 방법은 GOCI 반사도 및 산출물(엽록소 농도, 총 부유물질, 용존유기물)을 이용하여 수질평가지수를 추정하였다. 기계학습으로는 Random Forest(RF), Support Vector Regression (SVR), Cubist를 사용하였다. 수질평가 항목 추정에서 투명도의 정확도가 가장 높게 나타났으며, 모든 수질평가 항목 추정에서 세 가지 기계학습 중 RF의 정확도가 가장 높았다. 하지만 추정된 수질평가 항목들로 계산한 수질평가지수는 추정된 수질평가 항목들의 오차와 저층 산소포화도의 불확실성으로 인해 정확도가 높지는 않았다. 반면 GOCI 반사도와 산출물을 이용하여 추정한 수질평가지수는 현장 관측 기반 수질평가지수와 비교했을 때 첫 번째 방법보다 정확도가 높게 나타났다. 또한 엽록소 농도가 수질평가지수 추정에 가장 중요한 변수로 나타났다.
본 논문에서는 초등 정보과학영재를 위한 교육과정을 개발하기 위하여 다음과 같은 연구를 수행하였다. 첫째, 현재 각 대학 부설 과학영재교육원에서 실시하고 있는 초등 정보과학영재를 대상으로 하는 교육내용을 분석하였다. 둘째, 재량 및 특활 시간에 이루어지고 있는 ICT 교육과정 분석을 통해 초등 정보과학영재를 위한 교육 요소를 추출하였다. 셋째, 초등 정보과학영재를 위한 교육과정을 실제 교육에 효과적으로 적용하기 위해서 교육내용을 여러 가지 영역으로 분류하였으며 각각의 영역에 따른 학습주제를 원격교육, 참여교육, 집중교육으로 분류하였다. 넷째, 연간 교육일정에 따른 초등 정보과학영재를 위한 교육과정을 개발하였다.
e-러닝은 교육과 학습을 위하여 e-비즈니스 기술 및 서비스를 사용하는 응용프로그램이다. 이는 원격지자원과 서비스에 접근을 수월하게 함으로서 교육의 질을 높이기 위한 새로운 멀티미디어 및 인터넷 기술을 사용한다. 본 논문은 신중하게 설계되고 구현된 인터넷기반의 컴퓨터기반 시험 시스템에 대하여 기술한다. 본 시스템은 콘텐츠 전달 기술, 컴퓨터 적응형 시험 알고리즘, 리뷰엔진으로 구성되어 있다. 본 논문에서는 컴퓨터기반 시험 시스템을 설계하고 구현할 때에 고려되어야 할 요소들에 대하여 서술한다. 또한, 실제 데이터를 이용하여 컴퓨터 적응형 알고리즘을 위한 편향 값을 어떻게 조절하는지를 보인다.
본 논문에서는 의료영상에서 특정 장기를 추출하여 질환 부위를 인식하는 알고리즘을 제안한다. 의료영상이 추출되어진 장기 부위에서 질환을 인식하기 위하여 단일 신경회로망을 이용하면 신경회로망의 학습 능력과 일반화 능력이 한정적이므로 성능개선에 많은 문제가 있다. 따라서 추출된 장기로부터 질환부위를 인식하는 것은 신경회로망을 복합적인 방법, 즉 RBF (Radial Basis Function), BP (Back Propagation)로 구성하여 단일 신경회로망의 단점을 극복하였다. 본 논문에서 제안하는 알고리즘은 입력 의료영상의 다양한 형태 변화에 적응력이 뛰어남을 실험결과로 알 수 있었다. 그리고, 전체 알고리즘의 수행시간이 장기추출 알고리즘을 포함하여 일반적으로 10초 이내에 수행됨을 실험 결과 알 수 있었다. 제안된 알고리즘은 실시간으로 의료영상의 질환부위를 인식하여 판별 자동화를 통해 원격의료에 사용 되어 질 수 있다.
미국의 대학평가인정제를 개관하였다. 그리고 2000년을 전후하여 대폭적으로 개정된 여섯 개 지역별 대학평가 인정기준을 대학도서관에 대한 평가기준을 중심으로 분석하였다. 그 결과 여섯 가지 특징적 변화 경향을 파악 하였다. 즉 목적 기반의 평가, 성과 중심의 정성적 평가, 학생의 학습성과 강조, 도서관의 가르치는 역할 강조, 원격교육 서비스 강화, 그리고 규범성과 구체성의 후퇴가 그것이다. 연구자는 이러한 최신 경향에 대한 이해를 바탕으로 우리나라의 대학평가기준 중 도서관 관련 평가항목이 지향해야 할 방향을 제안하였다.
SCORM은 교육용 컨텐츠를 SCO라는 객체 단위로 공유하고 재사용하기 위한 국제적 표준이다. 그러나 유사 영역에서의 학습 컨텐츠 재사용시 컨텐츠의 일부분을 변경해야 할 경우에도 컨텐츠 원본을 수정해야 하는 문제점을 안고 있다. 따라서 이 논문에서는 이러한 문제점을 해결하기 위해 상속이 가능한 컨텐츠를 개발할 수 있는 I-SCO 모델을 제안한다. I-SCO 모델은 SCORM 기반 컨텐츠의 오버로딩과 오버라이딩을 통한 상속을 지원하여 컨텐츠의 재사용성을 증대시킨다. 실험에서는 제안한 I-SCO 모델을 설계 및 구현하여 ADL에서 배포하는 실행환경에서 실행시켜 봄으로써 컨텐츠의 상속 기능을 확인하고 I-SCO 모델의 타당성을 입증한다.
최근 맞벌이 가정이 많아지면서 베이비 시터를 고용해 영아를 양육하는 경우가 많아지고 있는 추세이다. 본 논문에서는 영유아 상태분석에 따른 인공지능 베이비시터 시스템에 대하여 기술하였다. 보다 상세하게는 얼굴인식을 위한 Opencv 영상처리 기법, MS(azure)API 를 이용한 머신러닝 기반의 감정분석과 악취 센서(MQ-135 Sensor)를 이용하여 영유아의 상태를 파악한다. 파악한 영유아의 상태를 바탕으로 스스로 학습하여 요람을 제어하고 어플리케이션을 통해 원격제어를 할 수 있도록 제작한 스마트 베이비시터 시스템에 관한 것이다. 이에 따라 양육에 대한 부담감이 줄어들 것으로 기대하고 양육에 대한 부담감을 조금이나마 경감 시켜 주어 저출산과 양육 지출 비용 절약으로 사회적 측면, 경제적 측면 모두에 기여할 것을 기대한다.
Purpose: The study aimed to identify factors that affect college students' learning immersion in non-face-to-face remote classes. Methods: During COVID-19, a survey was conducted on 140 college students who were taking non-face-to-face remote courses at universities located in Seoul, Gyeonggi-do, and Chungcheong-do, Korea. Data were analyzed using the Pearson correlation coefficients, Independent t-test, ANOVA, and Hierarchial stepwise multiple regression with SPSS (Windows version 27.0). Results: In the study, the most important variable influencing learning immersion was the student's self-efficacy, followed by instructor presence, class participation, lecture satisfaction, and credits. Conclusion: Instructors who teach major courses at college need to develop and apply ways to enhance learners' self-efficacy and class content that can boost learners' motivation in order to maximize learners' learning immersion. In order to facilitate learners' access to online media and maintain their interest in remote classes, passionate efforts need to be made by active instructors.
Purpose: The purpose of this study was to identify the impact of cognitive flexibility and e-learning digital literacy on the learning flow of nursing students who had experienced e-learning. Methods: The research design for this study was a descriptive survey using convenience sampling. Data were collected using online questionnaires completed by 134 nursing students in Andong city and Pocheon city. The data were analyzed using percentages, mean values, standard deviations, Pearson's correlation coefficients, and multiple regression with SPSS for Windows version 22.0. Results: Positive correlations were found between learning flow and e-learning digital literacy (r = .43, p < .001), between learning flow and cognitive flexibility (r = .52, p < .001), and between e-learning digital literacy and cognitive flexibility (r = .65, p < .001). In the multiple regression analysis, cognitive flexibility (β = .42, p < .001) was a significant predictor that explained 27.8% of variance in learning flow. Conclusion: The results of this study show that cognitive flexibility is a factor influencing learning flow in nursing students. Based on the results of the study, educational programs aiming to improve learning flow should include methods that improve cognitive flexibility.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.