Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2012.05a
/
pp.785-788
/
2012
최근 B2C 서비스산업에 있어 기업 간의 경쟁이 심화되고 새로운 비즈니스 가치 창출을 위한 필요 성이 증대되고 있는 상황에서, 기업들은 비즈니스 프로세스 관리 기술에 많은 관심을 기울이고 있다. 프로세스의 최적화를 통해 지속적으로 서비스 품질을 개선하기 위해 비즈니스 프로세스 재설계의 근거로 사용될 수 있는 비즈니스 프로세스 마이닝이 중요한 개념으로 인식되고 있다. 하지만 기존의 프로세스 마이닝에 관한 연구에서는 완성되어 있는 프로세스 로그를 기반으로 워크플로우 기반의 프 로세스 모델을 추출하는 단조로운 형태였기 때문에 다양한 형태의 비즈니스 프로세스를 표현하는데 한계가 있었다. 본 논문에서는 컨벤션, 대학,병원등 광범위한 지식서비스 분야에서 적합한 Prototype 기관을 Test bed로 다양한 프로세스 마이닝 기법으로 분석하여 해당 조직의 문제 프로세스를 발견하 고 개선점을 제안하다. 또한 B2C 서비스 산업에서 적절한 Test bed를 선정하여, 실제 프로세스를 기 존의 legacy system의 event log file에서 분석하여 bottle neck process를 찾아내고, 문제 프로세스를 개선하는 과정을 자동화된 모델링 및 분석 툴을 사용하여 실증적으로 보여준다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.8A
/
pp.1169-1176
/
2000
In this paper, label assignment schemes considering the IP flow model for the efficient MPLS traffic engineering are proposed and evaluated. Based on the IP flow model, the IP flows are classified into transient flows and base flows. Base flows, which last for a long time, transmit data in high bit rate, and be composed of many packets, have good implications for the MPLS traffic engineering, because they usually cause network congestion. To make use of base flows for the MPLS traffic engineering, we propose two base flow classifiers and label assignment schemes where transient flows are allocated to the default LSPs and base flows to explicit LSPs. Proposed schemes are based on the traffic-driven label triggering method combined with a routing tabel. The first base flow classifier uses both flow size in packet counts and routing entries, and the other one, extending the dynamic X/Y flow classifier, is based on a cut-through ratio. Proposed schemes are shown to minimize the number of labels, not degrading the total cut-through ratio.
Ri-Yeong Kim;Su-Min Kim;Jeong-Eun Ryu;Soo-Min Lee;Seongmin Kim
Annual Conference of KIPS
/
2024.05a
/
pp.298-301
/
2024
클라우드 환경에서 컨테이너 사용이 증가하면서 컨테이너 환경을 대상으로 하는 여러 보안 위협이 증가하고 있다. 대표적인 악성 컨테이너는 크립토재킹 컨테이너로, 인스턴스 소유자의 승인 없이 리소스를 탈취하여 암호화폐를 채굴하는 공격이다. 이러한 공격은 리소스 낭비를 초래할 뿐 아니라 자원을 공유하는 정상 컨테이너나 호스트 인프라에까지도 영향을 미칠 수 있다. 따라서 본 논문에서는 크립토재킹 컨테이너를 탐지하기 위한 앙상블 기반의 크립토재킹 컨테이너 탐지 프레임워크 설계를 제안한다. 또한, 앙상블 모델 학습을 위한 데이터 수집에 있어 크립토재킹 컨테이너의 동적 특징을 나타내는 시스템 콜 및 네트워크 플로우 기반의 특성 활용 가능성을 사례 연구를 통해 분석하였다.
KIPS Transactions on Software and Data Engineering
/
v.5
no.3
/
pp.125-138
/
2016
The service identification in service-oriented developments has been conducted by based on workflow, goals, scenarios, usecases, components, features, and patterns. However, the identification of service by semantic approach at the business value view was not detailed yet. In order to enhance accuracy of identifying business service, this paper proposes a method for identifying business service by analyzing syntax and semantics in XL-BPMN model. The business processes based on business scenario are identified, and they are designed in a XL-BPMN business process model. In this business process model, an unit business service is identified through binding closely related activities by the integrated analysis result of syntax patterns and properties-based semantic similarities between activities. The method through XL-BPMN model at upper business levels can identify the reusable unit business service with high accuracy and modularity. It also can accelerate more service-oriented developments by reusing identified services.
Journal of the Computational Structural Engineering Institute of Korea
/
v.36
no.4
/
pp.259-264
/
2023
In this study, we devised a parametric analysis workflow for efficiently analyzing the material properties of 3D woven materials. The parametric model uses wire spacing in the woven materials as a design parameter; we generated 2,500 numerical models with various combinations of these design parameters. Using MATLAB and ANSYS software, we obtained various material properties, such as bulk modulus, thermal conductivity, and fluid permeability of the woven materials, through a parametric batch analysis. We then used this large dataset of material properties to perform a regression analysis to validate the relationship between design variables and material properties, as well as the accuracy of numerical analysis. Furthermore, we constructed an artificial neural network capable of predicting the material properties of 3D woven materials on the basis of the obtained material database. The trained network can accurately estimate the material properties of the woven materials with arbitrary design parameters, without the need for numerical analyses.
Generally, the development of the database application includes the requirement analysis phase of creating ERD (Entity Relationship Diagram) and process models, coding, and testing. From the above phases, the analysis phase is not most formalized. It is usually hard task because (1) customers don't know the details of the desired system; (2) developers can't with ease understand the business logic of the customers; (3) the outcomes of the analysis, which are ERD and process models, are not easy to understand to the customers. This paper propose that the executional forms, which are better to understand the systems, should be presented to the customers instead of the ERD. These forms should accept the data input so that customers can review the various aspects of the outcome models. The developers should be able to instantly implement the business logic and also should be able to visually demonstrate the logic in order to get the details of it. For this goal, the customer supplied business logic should be able to be implemented by the references between forms, actions, constraints from the perspective of the data flow. The customers try to execute the forms implementing the business logic and review their supplied logic find new necessary business logic of their own. Iterating these processes for the requirement analysis would result in the success of the analysis which is sufficiently detailed without conflicts.
In spite of increasing complexity of wireless sensor network applications, most of the sensor node platforms still have severe resource constraints. Especially a small amount of memory and absence of a memory management unit (MMU) cause many problems in managing application thread stacks. Hence, a shared-stack was proposed, which allows several threads to share one single stack for minimizing the amount of memory wasted by fixed-size stacks. In this paper, we present the memory usage models for thread stacks by deriving the overflow probability of the fixed-size stack and the shared-stack and also show that the shared-stack is more reliable than the fixed-size stack.
After launching its service in November 2022, ChatGPT has rapidly increased the number of users and is having a significant impact on all aspects of society, bringing a major turning point in the history of artificial intelligence. In particular, the inference ability of large language models such as ChatGPT is improving at a rapid pace through prompt engineering techniques. This reasoning ability can be considered as an important factor for companies that want to adopt artificial intelligence into their workflows or for individuals looking to utilize it. In this paper, we begin with an understanding of in-context learning that enables inference in large language models, explain the concept of prompt engineering, inference with in-context learning, and benchmark data. Moreover, we investigate the prompt engineering techniques that have rapidly improved the inference performance of large language models, and the relationship between the techniques.
This research paper explores the application of FinBERT, a variational BERT-based model pre-trained on financial domain, for sentiment analysis in the financial domain while focusing on the process of identifying suitable training data and hyperparameters. Our goal is to offer a comprehensive guide on effectively utilizing the FinBERT model for accurate sentiment analysis by employing various datasets and fine-tuning hyperparameters. We outline the architecture and workflow of the proposed approach for fine-tuning the FinBERT model in this study, emphasizing the performance of various datasets and hyperparameters for sentiment analysis tasks. Additionally, we verify the reliability of GPT-3 as a suitable annotator by using it for sentiment labeling tasks. Our results show that the fine-tuned FinBERT model excels across a range of datasets and that the optimal combination is a learning rate of 5e-5 and a batch size of 64, which perform consistently well across all datasets. Furthermore, based on the significant performance improvement of the FinBERT model with our Twitter data in general domain compared to our news data in general domain, we also express uncertainty about the model being further pre-trained only on financial news data. We simplify the complex process of determining the optimal approach to the FinBERT model and provide guidelines for selecting additional training datasets and hyperparameters within the fine-tuning process of financial sentiment analysis models.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.641-643
/
2021
The Internet of Things (IoT) connects all markets and industries, enabling new business models for a variety of services and service providers. The Internet of Medical Things (IoMT) not only accelerates medical advances, but also enables treatment with a more human approach. In addition, it improves treatment methods and quality of precision medical care through data, enables timely treatment, and improves operational productivity of medical institutions through a simplified workflow. However, since the medical field directly affects human health and life, securing security has become an issue above all else, and is a target for hackers trying to exploit it. Therefore, in this study, IoMT technology and security threats and countermeasures in the medical field are analyzed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.