• Title/Summary/Keyword: 우주발사체(launch system)

Search Result 255, Processing Time 0.025 seconds

On the Pressurization System for a Launch Vehicle (우주발사체 가압시스템 설계)

  • Hong, Moon-Geun;Chung, Yong-Gahp;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.113-115
    • /
    • 2006
  • Consulting Stout & Snell's paper[1], design approaches for the pressurization system for a launch vehicle are introduced. We have outlined the typical system requirements and a dynamic model of the pressurization system. A brief summary on the control loop design for multiple on-off valve control systems has been also presented.

  • PDF

Development of a GPS Receiver System for Satellite Launch Vehicles (위성발사체용 GPS 수신기 시스템의 개발)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.929-937
    • /
    • 2008
  • A GPS receiver system utilized on satellite launch vehicles should operate normally under harsh environments as well as high-dynamic conditions. The GPS receiver system to use for range safety of KSLV(Korea Space Launch Vehicle)-I that is the first satellite launch vehicle developed by KARI(Korea Aerospace Research Institute) has been confirmed to survive under the environment of the launcher through extensive terrestrial tests including humidity, high and low temperatures, vacuum, sinusoidal and random vibrations, shocks, acceleration, EMI/EMC(Electromagnetic Interference/ Electromagnetic Compatibility), etc. Several performance tests have been also carried out in order to evaluate tracking capability and accuracy of the GPS receiver under high-dynamic conditions using a GPS signal simulator. Some lessons-learned during development of the GPS receiver system and its special characteristics compared with COTS(Commercial-Off-The-Shelf) GPS receiver systems are described in this paper.

Flight Safety Operation for the 1st Flight Test of Naro(KSLV-I) (나로호(KSLV-I) 1차 비행시험 비행안전 운영)

  • Ko, Jeong-Hwan;Choi, Kyu-Sung;Sim, Hyung-Seok;Roh, Woong-Rae;Park, Jeong-Joo;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.280-287
    • /
    • 2010
  • The first Korean satellite launch vehicle, KSLV-I(Korea Space Launch Vehicle-I), was launched for its first flight test on Aug. 25, 2009 from Naro Space Center located in south Jolla province. Because launch vehicles usually fly long range with large amount of propellants aboard, preparation of countermeasures against potential malfunctions during flight is essential in launch operation. In this paper, the flight safety operation, prepared to guarantee flight safety during launch operation of KSLV-I, is presented. Prior to flight test, flight safety analysis is performed to estimate associated risk levels quantitatively, and during flight, flight safety systems are operated to cope with any risky situations. Real-time flight monitoring including computation of instantaneous impact point using tracking data is executed normally and the flight test is completed without activation of flight termination system.

An Investigation on the Failure Examples of Space Launcher development in U.S.A./Europe (미국/유럽의 우주발사체 개발 중 실패사례 분석)

  • Kim, Ji-Hoon;Lee, Han-Ju;Jung, Dong-Ho;Cho, Sang-Yeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.93-98
    • /
    • 2006
  • The advanced countries like the United States of America and Europe have experienced many failures in development of space launch systems. Research and analysis of the failures will be helpful to our launch system development. In this report, the failures of Space Shuttle in U.S.A. and Ariane in Europe were investigated and analyzed. These are excessively small portion of the failures, so it is necessary to investigate and research the more various failures of the other countries specially Russia(former Soviet Union).

  • PDF

Design Review of Launch Complex Thermostatting System (발사대 온도 제어 시스템 설계 분석)

  • Choi, Sang-Ho;Ok, Ho-Nam;Kim, Seong-Lyong;Kim, Young-Hoon;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.57-67
    • /
    • 2012
  • In this study, design of LCTS(Launch Complex Thermostatting System), which is one of ground support equipments for KSLV-I, is analyzed based on CDP(Critical Design Package) provided by Russia. The thermo-hydraulic design of air preparation compartment and hydraulic design of air heating & distribution compartment performed. Also numerical simulation of air heating & distribution compartment was conducted and compared with actual measurement data. Finally, insulation design of system was analyzed. Designing method of LCTS will be helpful in developing or modifying LCTS for new launch vehicle.

Study on Restructuring of Space Governance in Korea (우리나라 우주개발 정부 조직체제 개선방안 연구)

  • Hwang, Chin Young;Kim, Jong Bum
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.64-69
    • /
    • 2019
  • The purpose of this study is to explore the current status and challenges of the space development system in Korea following the successful launch of test vehicle, the Korean space launch vehicle II on the 30th anniversary of space development and seek an alternative to the government organizations for efficient space development future. The study investigates the space development system of leading countries such as USA, France, and Japan with keen focus on the administrative organizations and thereafter draw implications for Korea. The analysis of the existing situation in Korea focuses on governance, such as space-related government organizations, space development agency, and specialized research funding agency. As a result, this study proposes the need for full-scale discussion on building a space agency.

산화제 공급배관의 분기 위치에 따른 추진기관 성능 비교

  • Kim, Ji-Hoon;Lee, Han-Ju;Jung, Dong-Ho;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.179-185
    • /
    • 2005
  • It is an essential subject to decrease the mass of a launch vehicle for improving performance and efficiency of space launch system. Particularly, reducing the engine supporting area is necessary for high efficiency of propulsion system with clustered engine systems. The engine supporting area is related to the branch location of the oxidizer feeding line. This article deals the performance variation of the propulsion system such as the mass of the oxidizer feeding line, pressurization pressure of the oxidizer tank, and the onset of nucleation boiling in the oxidizer pipe with the branch location of the main feeding line.

  • PDF

Introduction to Quality Management System of Rocket Fuel at NARO Space Center (나로우주센터의 발사체 연료유 품질관리 과정 소개)

  • Kim Seong-Lyong
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • The Korean launch vehicle (KSLV-II) has used commercial aviation jet fuel, Jet A-1. Fuel specifications were introduced from Jet A-1 specifications. However, specifications and inspection methods of moisture and particulate matters were changed digitally for convenience and accuracy. To control fuel quality, a fuel management system was established to determine suitability by inspecting it at each stage of warehousing, storage, and application. An analysis room was then established at the Naro Space Center. The possibility of fuel mixing was blocked by warehousing inspection. Long-term component changes were then observed by storage inspection. Finally, suitability of the engine test or the launch vehicle test was determined through application inspection. Long-term analysis verified that the space center's fuel oil storage method was appropriate and that the quality management system was able to handle hundreds of engine tests and several flight tests.

Operation of the GPS Receiver System for KSLV-I on the Launch Site at Naro Space Center (나로우주센터 발사장에서 나로호 GPS 수신기 시스템의 운용)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.737-745
    • /
    • 2010
  • This paper describes the operation results of the GPS receiver system for KSLV (Korea Space Launch Vehicle)-I on the launch site at Naro Space Center that is the first spaceport of South Korea located at Goheung. All equipments of KSLV-I including the GPS receiver system should be monitored and controlled through hard-wired interface during KSLV-I is on standby at the launch pad. The GPS receiver for KSLV-I is connected to triple almost omni-directional patch antennas mounted on the cylindrical surface of KSLV-I that should be erected vertically on the launch pad until lift-off. Signal interference and multipath effects observed in the GPS receiver on the launch site are analyzed in this paper based on the GPS signals received from each GPS antenna.

Performance Analysis of GPS Antenna for KSLV-I under Hot Temperature Environment (고온 환경에서 KSLV-I 발사체용 GPS 안테나의 성능 분석)

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Choi, Hyung-Don;Jung, Ho-Rac
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.157-164
    • /
    • 2007
  • For a GPS antenna to normally receive GPS satellite signals during full flight mission of a satellite launch vehicle, it should be installed on skin of the vehicle. The surface of a launch vehicle is drastically heated up due to aerodynamic heating effect during flight, so that the GPS antenna mounted on surface of the launch vehicle is directly exposed to extremely hot temperature environment. Hot temperature test specification of the GPS antenna, therefore, is severer than inner components. This paper describes that procedures and results of performance analysis of the GPS antenna for KSLV-I under hot temperature environment. The GPS antenna was not deformed physically and inner LNA(Low Noise Amplifier) operated normally without performance degradation.

  • PDF