• Title/Summary/Keyword: 우주개발사업

Search Result 294, Processing Time 0.027 seconds

하이테크 산업의 총아-브라질의 Avibras사

  • Heo, Hun
    • Defense and Technology
    • /
    • no.10 s.128
    • /
    • pp.62-69
    • /
    • 1989
  • Avibras사는 세계적인 기업으로 지속적인 성장을 하고 있는 가장 큰 브라질회사의 하나로서, 연구 및 사업개발과 고도의 기술제품 및 장비를 생산하는 민간 기술회사이다. 이 회사는 순수 브라질 회사로서 1961년이후 방위산업, 화학, 전자통신분야에서 그의 전문성을 발휘하면서 국가적인 항공우주산업을 선도해 왔다

  • PDF

The Overview of the Design and Development Process of the Indigenous Korean Utility Helicopter (KUH) (한국형기동헬기(KUH) 설계개발과정 개관)

  • Yoon, Heekweon;Oh, Sangchul;Jeong, Sangwon;Yang, Junho
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.3
    • /
    • pp.29-32
    • /
    • 2008
  • The overview of KUH design and development process is presented according to Buede's systems and development "vee" model. The system decomposition and integration activities exemplify KUH specification tree, design maturity and analysis according to design stage(conceptual, preliminary, and detail design), scheduled work breakdown structure, qualification test, ground test, and flight test. This process can be applied to the development of a new aircraft.

  • PDF

저 우주를 향하여(2)

  • Gu, Sang-Hoe
    • Defense and Technology
    • /
    • no.10 s.296
    • /
    • pp.38-47
    • /
    • 2003
  • 2차 세계 대전 이후 대형 로켓의 개발에 소극적이었던 미 정부는 미.소간의 냉전이 격화되던 1950년에 한국전쟁이 발발하게 되자 당시 미국의 트루먼 대통령은 안보강화를 위해, 폰 브라운에게 사정거리 300km이 레드스톤 지대지 유도탄개발을 지시하였고, 1953년 8월 플로리다의 케이프커내버럴 공군기지에서 유도탄 발사에 성공하였다. 이어서 대륙간 탄도탄개발이 본격적으로 추진되었다. 이와 더불어 미국 정부는 미국의 국가위상을 고양하고 기술적 우위를 세계에 과시하기 위해 인공위성의 발사가 절대적으로 필요하다는 결론을 내리고 인공위성사업을 추진키로 하였다.

  • PDF

Risk Management of Launch Vehicle Propulsion System (우주 발사체 추진기관의 위험 관리)

  • Cho, Sang-Yeon;Shin, Myung-Ho;Ko, Jung-Hwan;Oh, Seung-Hyub;Park, Jeong-Joo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.3-6
    • /
    • 2007
  • Korea Aerospce Research Institute(KARI) has been developing the first civilian rocket, Korea space launch vehicle (KSLV-I), which can put the small size satellite into designated orbit. Developing launch vehicles contains a lot of uncertainty due to large scale, complexity, and technical difficulty. The uncertainty may become risk in the areas of business and technology which causes schedule delay, cost increase, and design changes of subsystems and components. This study describes the technical risk identification methods using FTA and procedures of planning and implementation of risk assessment and reduction of launch vehicle propulsion system.

  • PDF

Practical Requirements and Verification Management for Requirements-based Development Process in Space Launch Vehicle Development Project (요구조건 기준의 개발 수행을 위한 우주발사체 개발사업의 실제적인 요구조건-검증 관리 체계)

  • Dong Hyun Cho;Jun Hyouk Jang;Il Sang Yoo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.56-63
    • /
    • 2023
  • For the success of system development, it is necessary to systematically manage the requirements that are the basis of system development and its verification results. In order to follow the principles of SE(Systems Engineering)-based V&V(Verification&Validation) process, requirements can be managed by securing the requirements and their establishments, design compliances, and verification compliances according to the system development lifecycle. Especially, in a large-complex system research and development project, such as a space launch vehicle development project, many participants establish, verify, and validate numerous requirements together during the project. Therefore, logical and systematic requirements management, including guarantee of data integrity, change history, and traceability, is very important for multiple participants to utilize numerous requirements together without errors. This paper introduces the practical requirements and verification management for the requirements-based development process in the space launch vehicle development project.

Basic Study for a Korean Lunar Simulant (KLS-1) Development (한국형 인공월면토(KLS-1) 개발을 위한 기초 연구)

  • Ryu, Byung-Hyun;Baek, Yong;Kim, Young-Seok;Chang, Ilhan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.53-63
    • /
    • 2015
  • For the success of future missions to the Moon and other similar cosmic environments, understanding and utilization of the lunar regolith has become essential. However, due to the scarcity and unaffordability of real lunar regolith on Earth, a number of lunar regolith simulants (e.g., JSC-1; NASA) have been developed for experimental purposes. However, Korea does not have its own lunar regolith, even though the country is planning to actively pursue lunar and space missions in the 2020s. Thus, this study has been conducted to develop a Korean lunar simulant prototype via basic feasibility attempts (e.g., raw material selection, particle size and chemical composition simulation). Finally, the first prototype of Korea's own lunar simulant has been obtained, and denominated as KLS-1.

Design and Development of High Altitude Test Facility for Kick Motor (고공환경모사 시험설비 설계/개발)

  • Ryu, Jung-Hun;Lee, Jun-Ho;Suh, Hyuk;Jang, Ki-Won;Kim, Yong-Wook;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.403-404
    • /
    • 2008
  • The 2nd stage Kick Motor under the national aerospace middle and long term plan operates over the height of 300Km. Rocket Motors, designed for operation in high altitude, need nozzles with large expansion ratio to improve thrust efficiency. Hence, to evaluate the performance of such rocket motors on the ground, similar low pressure with the operating condition has to be made for the ground test to prevent flow separation in the nozzle. This study is for the installation of the high altitude test facility and test result for Kick Motor.

  • PDF

Development of status monitoring tools for KASS system operation (KASS 시스템 운영을 위한 상태감시 도구 개발)

  • Minhyuk SON;ByungSeok LEE
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.643-648
    • /
    • 2023
  • The Korea Augmentation Satellite System is an SBAS system being developed with the goal of providing SoL (Safety of Life) in accordance with ICAO (International Civil Aviation Organization) standards by December 2023. Monitoring the status of the system is essential for the continuous provision of KASS services, and a status monitoring tool should be developed for this purpose. The development of a status monitoring tool was divided into SYSRT (SYStem Real Time monitoring tool), SMSPP (Subsystem Monitoring Statistics tool for Post Processing) depending on the purpose. Tool development was completed through a series of procedures: requirements definition, design, development, and verification. To verify the status monitoring tool, the KASS system's real data (August 2023) were used to verify it, and the results were statistically analyzed to derive operating time and operating rate. It plans to use these tools to support continuous service provision for SoL service starting after this year.