• Title/Summary/Keyword: 우선 배향성

Search Result 122, Processing Time 0.023 seconds

단일벽 탄소나노튜브의 직경과 촉매 나노입자 크기의 상호 연관성

  • Kim, Jin-Ju;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.75-75
    • /
    • 2010
  • 단일벽 탄소나노튜브(SWNT)는 뛰어난 물리적 성질과 화학적 안정성을 가지고 있어서 다양한 분야의 응용이 기대되어 폭넓은 연구가 진행 되고 있다. 특히 SWNT의 전기적 및 기계적 특성들은 SWNT의 직경 및 뒤틀림도(chirality)에 의해 크게 좌우되기 때문에, 합성하는 단계에서 직경 또는 chirality를 제어에 관한 많은 이론적 연구가 진행되어 왔으며, 최근에는 초기 SWNT의 핵생성 단계에서의 촉매의 거동 및 상호 연관성 등에 관한 실험적인 연구결과들이 속속 보고되고 있는 실정이다. 하지만, 아직도 이에 관한 더욱 다양하고 활발한 연구 접근 및 결과들이 필요한 시점이다. 상기 배경을 바탕으로 본 연구에서는 균일한 직경을 갖는 SWNT의 합성을 위한 기초연구로서 SWNT의 직경과 촉매나노입자의 크기의 상호 연관성에 대해 체계적으로 조사하였다. 우선 SWNT합성을 위한 촉매나노입자를 얻기 위해 페리틴(ferritin)용액의 농도 및 스핀코팅 조건을 변화시킴으로써 기판 위에 분산농도를 제어한 후, 대기 열처리를 통하여 촉매나노입자의 농도를 제어하였다. 나노입자의 평균직경은 4 nm 정도로 비교적 균일하였으며, 고농도의 촉매입자는 SWNT의 다발화(bundling)를 유발하였다. 따라서, SWNT와 나노입자 직경의 상호연관성을 조사하기 위해서는 단분산(monodispersed) 된 나노입자를 이용하였으며, 아르곤 분위기에서 추가적으로 고온($900^{\circ}C$) 열처리를 실시함으로써 나노입자의 크기감소를 도모하였다. 실험결과, 열처리 시간의 증가에 따라 입자크기가 감소함을 확인하였으며, 이는 나노입자의 증발에 의한 것으로 예상된다. 다음으로는 열처리를 통하여 직경이 제어된 나노입자를 이용하여 SWNT를 합성한 후 SWNT와 촉매크기 사이의 크기 관계를 조사하였다. SWNT의 합성은 메탄을 원료가스로 열화학증기증착법을 이용하였고, 합성기판으로는 산화실리콘웨이퍼와 퀄츠기판을 이용하였다. 성장한 SWNT의 직경은 AFM을 이용하여 측정하였으며, 퀄츠기판에 수평배향 성장시킨 SWNT를 3차원 구조의 기판으로 전사(transfer)하여, 라만분석이 용이하도록 하였다.

  • PDF

Control of surface morphologies of textured ZnO:Al films prepared by in-line RF-magnetron sputtering (인라인 스퍼터링법에 의한 ZnO:Al 박막 증착 및 습식 식각에 따른 표면 형상 제어)

  • Kim, Young-Jin;Cho, Jun-Sik;Park, Sang-Hyun;Yoon, Kyung-Hoon;Song, Jin-Soo;Wang, Jin-Suk;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.176-179
    • /
    • 2009
  • ZnO:Al 투명전도막을 유리기판위에 in-line RF-magnetron sputtering법으로 증착온도 및 증착압력에 따라 제조하고, 습식식각에 따른 박막의 표면형상 및 광학적 특성변화를 조사하였다. 초기박막은 육방정계(Hexanonal wurtzite)의 결정 구조와 (002)면의 c-축 우선배향성을 갖으며 가시광 영역에서 높은 광 투과도(T $\geq$ 80%)와 낮은 비저항($\rho\;=\;5.2{\times}10^{-4}{\Omega}{\cdot}cm$)의 특성을 나타내었다. 습식 식각 후 박막의 표면형상은 식각 전 박막의 결정성에 큰 의존성을 보이며 본 연구에서는 1 mTorr의 낮은 증착압력과 $350^{\circ}C$의 높은 증착온도에서 증착된 결정성이 우수한 막에서 높고 균일한 형태의 crater를 갖는 표면형상을 얻을 수 있었다. 균일한 crater를 형성하는 ZnO:Al 박막은 hill 형태의 표면형상을 갖는 상용 Asahi-U glass에 비하여 높은 Haze ($T_{diffused}/T_{total}$)값과 넓은 산란각을 나타내어 향상된 광 산란특성을 갖으며 이는 실리콘 박막 태양전지내로 입사된 광의 산란경로를 증가시켜 태양전지 성능을 크게 향상시킬 수 있을 것으로 기대한다.

  • PDF

Effects of Excess Lead Addition on Sol-Gel Derived ($Pb_{0.9}La_{0.1}$)$Ti_{0.975}O_3$(PLT (10)) Thin Film

  • Kim, Seong-Jin;Jeong, Yang-Hui;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • In order to study electric properties of (Pb$\_$0.9/La$\_$0.1/)Ti$\_$0.975/O$_3$(PLT (10)) films with varying excess lead concentration (7.5, 10, 12.5, 15 ㏖% excess lead), the PLT films were deposited by sol-gel process. DTA analyses reveal that the crystallization temperature of the precursor powers decreased with increasing amount of excess lead. XRD patterns of PLT reveal pure perovskite structure and the preferred orientation increased with increasing Pb content in the films. With increasing amount of excess P$\_$b/, the relative permittivity ($\xi$$\_$r/) increased and leakage current density at 100 ㎸/cm transformed 4.01$\times$10$\^$-5/, 2.42$\times$10$\^$-6/, 1.27$\times$10$\^$-6/, 1.56$\times$10$\^$-6/A/㎠ respectively. In the results of hysteresis loops measured at 166 kV/cm, the remanent polarization (P$\_$r/) and the coercive field (E$\_$c) are 6.36$\mu$C/cm and 58.7 ㎸/cm, respectively (at 12.5 ㏖% excess P$\_$b/) With increasing amount of excess Pb, the remanent polarization for PLT thin film degraded to about 44%, 27%, 15%, 16% of the initial value after 10$\^$9/ cycles./TEX>) With increasing amount of excess Pb, the remanent polarization for PLT thin film degraded to about 44%, 27%, 15%, 16% of the initial value after $10^{9}$ cycles.

Investigation of aluminum-induced crystallization of amorphous silicon and crystal properties of the silicon film for polycrystalline silicon solar cell fabrication (다결정 실리콘 태양전지 제조를 위한 비정절 실리콘의 알루미늄 유도 결정화 공정 및 결정특성 연구)

  • Jeong, Hye-Jeong;Lee, Jong-Ho;Boo, Seong-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.254-261
    • /
    • 2010
  • Polycrystalline silicon (pc-Si) films are fabricated and characterized for application to pc-Si thin film solar cells as a seed layer. The amorphous silicon films are crystallized by the aluminum-induced layer exchange (ALILE) process with a structure of glass/Al/$Al_2O_3$/a-Si using various thicknesses of $Al_2O_3$ layers. In order to investigate the effects of the oxide layer on the crystallization of the amorphous silicon films, such as the crystalline film detects and the crystal grain size, the $Al_2O_3$ layer thickness arc varied from native oxide to 50 nm. As the results, the defects of the poly crystalline films are increased with the increase of $Al_2O_3$ layer thickness, whereas the grain size and crystallinity are decreased. In this experiments, obtained the average pc-Si sub-grain size was about $10\;{\mu}m$ at relatively thin $Al_2O_3$ layer thickness (${\leq}$ 16 nm). The preferential orientation of pc-Si sub-grain was <111>.

Variation of the Magnetic Properties of Electrodeposited CoP Nanowire Arrays According to Their Size and Microstructure (CoP나노선재의 자기적 성질에 미치는 미세구조와 크기 효과)

  • Kim, Yi J.;Lee, Kwan H.;Jeung, Won Y.;Kim, Kwang B.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.208-211
    • /
    • 2003
  • We have investigated the dimensional and microstructural dependence of magnetic properties of CoP nano-wire arrays fabricated by electrodeposition on AAO(anodic aluminum oxide) templates with different-size nanopores. Our results indicate that the magnetic properties of nanowire arrays can be varied with their dimensions and microstructures. As for the CoP nanowire arrays with the diameter of 20nm, it was found to have the coercivity more than 2.6kOe due to the shape anisotropy and squareness(Mr/Ms) of $\~0.8$. The CoP nanowire arrays with the diameter of 200m, however, showed very different magnetic properties depending on the current densities. Nanowires fabricated at $5mA/cm^2$ had stronger tendency to have the preferred crystallographic orientation of (002) parallel to the nanowire than those fabricated at $35mA/cm^2$ These microstructural differences are the reason why CoP nanowire arrays prepared at different current densities exhibited different magnetic properties.

Magnetic Properties of $Nd_xFe_{90.98-x}B_{9.02}$ Thin Films Grown by a KrF Pulsed Laser Ablation Method (KrF Pulsed Laser Ablation 법으로 제조한 $Nd_xFe_{90.98-x}B_{9.02}$ 박막의 자기특성)

  • 김상원;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.299-307
    • /
    • 1997
  • NdFeB films have been grown onto Si(100) substrate by a KrF pulsed laser ablation of the targets of $Nd_xFe_{90.98-x}B_{9.02}$ (x=17.51~27.51) at the substrate temperature of 620~700 $^{\circ}C$ and the laser beam energy density of 2.75~5.99 J/$\textrm{cm}^2$. The films exhibit no preferred orientation, however, good hard magnetic properties were produced from as-deposited condition : $4{\pi}M_s$=7 kG, $4{\pi}M_r$=4 kG, and $H_c$=300~1000 Oe. The depositon rate was not greatly influenced by changing the substrate temperature, but it increases linearly by increasing the beam energy density. The beam energy density of 3 J/$\textrm{cm}^2$ gave the optimal condition to have the highest $4{\pi}M_r$ and $H_c$ as well. The higher content of Nd induces a higher coercivity and $4{\pi}M_r$ at the same time without prominent change in $4{\pi}M_s$.

  • PDF

Copper Film Growth by Chemical Vapor Deposition: Influence of the Seeding Layer (ICB seeding에 의한 CVD Cu 박막의 증착 및 특성 분석)

  • Yoon, Kyoung-Ryul;Choi, Doo-Jin;Kim, Seok;Kim, Ki-Hwan;Koh, Seok-Keun
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.723-732
    • /
    • 1996
  • Cu films were deposited by chemical wapor deposition on the as-received substrates (TiN/Si) and three kinds of Cu-seeded substrates (Cu/TiN/Si) which had seeding layer in the thick ness of 5 ${\AA}$ and 130 ${\AA}$ coated by ICB(Ionized Cluster Beam) method. The effect of Cu seeding layers on the growth rate, crystallinity, grain size uniformity and film adhesion strength of final CVD-Cu films was investigated by scanning eletron microscopy(SEM), X-ray diffractometry and scratch test. The growth rate was found to incresase somewhat in the case of ICB-seeding. The XRD patterns of the Cu films on the as-received substrate and ICB Cu-seeded substrates exhibited the diffraction peaks corresponding to FCC phase, but the peak intensity ratio($I_{111}/I_{200}$) of Cu films deposited on the ICB Cu-seeded substrates increased compared with that of Cu films on the as-received substrate. The resistivity of final Cu film on 40 ${\AA}$ seeded substrate was observed as the lowest value, 2.42 $\mu\Omega\cdot$cm compared with other Cu films. In adhesion test, as the seeding thickness increased from zero to 130 ${\AA}$, the adhesion strength increased from 21N to 27N.

  • PDF

A Study on the Preferred Orientation Characteristics of AlN Thin Films by Reactive Evaporation Method using NH3 (NH3를 이용한 반응성 증착법에 의한 AlN 박막의 우선배향특성에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Aluminum nitride(AlN) is a compound (III-V group) of hexagonal system with a crystal structure. Its Wurzite phase is a very wide band gap semiconductor material. It has not only a high thermal conductivity, a high electrical resistance, a high electrical insulating constant, a high breakdown voltage and an excellent mechanical strength but also stable thermal and chemical characteristics. This study is on the preferred orientation characteristics of AlN thin films by reactive evaporation using $NH_3$. We have manufactured an AlN thin film and then have checked the crystal structure and the preferred orientation by using an X-ray diffractometer and have also observed the microstructure with TEM and AlN chemical structure with FT-IR. We can manufacture an excellent AlN thin film by reactive evaporation using $NH_3$ under 873 K of substrate temperature. The AlN thin film growth is dependent on Al supplying and $NH_3$ has been found to be effective as a source of $N_2$. However, the nuclear structure of AlN did not occur randomly around the substrate a particle of the a-axis orientation in fast growth speed becomes an earlier crystal structure and is shown to have an a-axis preferred orientation. Therefore, reactive evaporation using $NH_3$ is not affected by provided $H_2$ amount and this can be an easy a-axis orientation method.

The Effect of Ar/O2 Partial Pressure Ratio on the Ferroelectric Properties of (Pb0.92La0.08)(Zr0.65Ti0.35)O3 Thin Films Deposited by RF Magnetron Sputtering Method (RF Magnetron Sputtering법으로 제작된 (Pb0.92La0.08)(Zr0.65Ti0.35)O3 박막의 Ar/O2 분압비에 따른 강유전 특성연구)

  • Kim, Sang-Jih;Yoon, Ji-Eon;Hwang, Dong-Hyun;Lee, In-Seok;Ahn, Jung-Hoon;Son, Young-Guk
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • PLZT ferroelectric thin films were deposited on Pt/Ti/$SiO_2$/Si substrate with $TiO_2$ buffer layer in between by rf magnetron sputtering method. In order to investigate the effect of Ar/$O_2$ partial pressure ratio on the ferroelectric properties of PLZT thin films, PLZT thin films were deposited at various Ar/$O_2$ partial pressure ratio ; 27/1.5 seem, 23/5.5 seem, 21/7.5 seem and 19/9.5 seem. The crystallinities of PLZT thin films were analyzed by XRD. The surface morphology was observed using FE-SEM. The P-E hysteresis loops, the remanent polarization characteristics and the leakage current characteristics were obtained using a Precision LC. The crystallinity and elaborateness of PLZT thin films were decreased as increasing the oxygen partial pressure ratio. And preferred orientation of PLZT thin films changed from (110) plane to (111) plane. The oxygen partial pressure ratio affects the thin film surface morphology and the ferroelectric properties.

Chemical Composition, Microstructure and Magnetic Characteristics of Cerium Substituted Yttrium Iron Garnet Thin Films Prepared by RF Magnetron Sputter Techniques (고주파 마그네트론 스퍼터 기법으로 제조된 Ce:YIG 박막의 화학 조성, 미세구조 및 자기적 특성)

  • 박명범;조남희
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.3
    • /
    • pp.123-132
    • /
    • 2000
  • Cerium substituted YIG thin films were grown by rf magnetron sputter techniques. We investigated the effects of post-deposition heat-treatment as well as various deposition parameters such as substrate materials, substrate temperature. sputter power, and sputter gas types on the crystallinity, chemical composition, microstructure and magnetic characteristics of the films. Post-deposition heat treatment over 750 $\^{C}$ was applied to crystallize as-prepared amorphous films, and a strong tendency of particular crystallographic planes tying parallel to substrate surface was observed for the post-deposition heat-treated films on GGG substrate. The chemical composition of the films exhibited a wide range of chemical stoichiometry depending on the oxygen fraction of sputter gas, and in particular the composition of the film deposited in sputter gas with an oxygen fraction of R = 10% was Ce$\_$0.23/Y$\_$1.30/Fe$\_$3.50/O$\_$12/. With raising the temperature of post-deposition heat-treatment from 900 $\^{C}$ to 1100 $\^{C}$, the surface roughness of the film on GGG substrates increased from about 3 nm to 40 nm, but their coercive force and ferromagnetic resonance line width decreased from 0.477 kA/m to 0.369 kA/m and from 12.5 kA/m to 8.36 kA/m, respectively.

  • PDF