이 연구는 시계열 과거 속도자료를 활용하여 유사한 패턴 변화를 보이는 요일을 그룹핑하는 알고리즘을 개발하였다. 알고리즘에 적용할 이력자료 시간적 범위는 과거 2개월치 자료를 사용하였으며, 공간적 범위는 도시부도로를 대상으로 하였다. 이 연구에서 제안한 알고리즘은 크게 거시적인 관점과 미시적인 관점으로 나누어 요일별 패턴분류를 수행하였다. 먼저 거시적인 관점에서 요일별 첨두/비첨두 시간대와 요일별 속도변화가 크게 나타나는 중점시간대를 도출하였다. 미시적인 관점에서는 거시적인 관점에서 도출된 중점시간대를 대상으로 요일간 속도 차이를 개별(요일별) 혹은 그룹간의 유사성을 비교하여 단계적으로 분류하는 2단계 속도 군집 알고리즘(Two-step speed clustering algorithm, TSC)을 개발하였다. TSC 알고리즘은 중점시간대의 매 가공주기(또는 제공주기)마다 요일별(월~일) 속도차이를 토대로 그룹핑하는 1단계와 1단계에서 도출된 각 그룹의 평균과 요일간의 속도차이를 비교하여 재할당하는 2단계로 구성된다. TSC 알고리즘은 실제 지점검지기에서 수집된 시간대별 시계열 자료를 토대로 개발 및 성능평가가 수행되었다. 따라서, 교통정보센터에서 수집 가공 저장되는 과거이력자료를 이용하여 요일별 패턴분류 수행이 가능하고 알고리즘 구현도 실제 가공체계에 적용하기 용이하다. 이 연구에서 제안한 알고리즘은 통행패턴기반 정보가공 알고리즘 개발, 요일별 반복정체구간 운영관리, TOD에 근거한 신호운영 개선 등 교통운영 및 관리 전반에 적용이 가능하다.
유비쿼터스 환경의 발달과 함께 모바일 장비에서 수집되어지는 컨텍스트 로그를 활용한 연구가 활발히 진행되고 있다. 하지만 기존의 컨텍스트 정보를 사용한 연구는 사용자 모델링에 그 초점을 맞추거나 단순하게 수집된 정보를 정리하여 한눈에 알아보기 쉽게 보여주는 정도에 그치고 있다. 본 논문에서는 사용자에게 새로운 서비스를 제공하기 위한 방법으로서 모바일 컨텍스트 로그와 외부 센서를 통해 정보를 수집하여 학습한 베이지안 네트워크를 이용하여 랜드마크를 찾아내는 예측 모델을 제안한다. 베이지안 네트워크 설계는 사전에 수집된 컨텍스트 정보를 요일과 주별로 분류하여 각각에 대한 베이지안 네트워크를 cross validation하여 랜드마크 예측에 대한 정확도를 평가하였다. 그리고 분류에서 가장 많이 사용하고 있는 SVM 방법을 사용하여 제안한 방법과의 성능을 비교평가하였다. 랜드마크 예측에 대한 정확도는 주간별로 설계한 베이지안 네트워크보다 요일별로 설계한 베이지안 네트워크가 랜드마크를 예측하는데 정화도가 높음을 확인하였고, 베이지안 네트워크를 사용한 방법이 SVM을 사용한 방법보다. 예측에 한 정확성이 우수하였다.
모바일 메뉴의 최적화를 위해 본 논문에서는 기존 모바일 메뉴를 요일별 사용행태를 분석하였고 이를 통해 모바일 서비스를 사용하는 사용자들이 요일별로 특정 서비스를 선호하는 현상을 보이는 것으로 나타났다. 이를 기반으로 요일별로 고객이 주로 사용하는 서비스 메뉴를 분류 및 선정하는 과정을 거쳐 고객의 이용 목적에 부합되도록 주초, 주중, 주말 별 차별화된 메뉴를 제공하기로 하였다. 차별화된 메뉴 개발을 위해 기존 모바일 메뉴에 Bold, Color, Icon 등의 효과의 차별화를 주는 다양한 시안을 개발하였고 고객 설문조사를 통해 이들 중 가장 효과적인 시안을 선택을 하였다. 최종 선택된 시안은 Color 및 Icon 효과별 메뉴에 제공하는 것이었다. 실제 사용 메뉴 시스템에 이를 적용하기 전에 실제 고객군과 동일한 Sampling 통해 선정된 12,000 여명의 고객을 대상으로 사전에 해당 시안을 제공하는 사전 파일릿 테스트를 한달간 시행하였다. 효과에 대한 검증은 12,000 여명의 실험군과 함께 동일한 방법으로 선정된 12,000 명의 대조군과 비교하는 방식으로 이루어졌으며, 측정방식은 PV(page view), 구매율, 매출 등을 비교하여 실험군 및 대조군 간의 증감을 비교하였으며 테스트 결과 실험군이 대조군 대비 사용량 기준으로 약 10% 정도의 개선효과를 보여, 제안된 메뉴가 효과적임을 증명하였다.
취수원에서 정수장과 배수지를 거쳐 수용가에 이르기까지 공급되는 급수량을 결정하는데 있어 각 수용가별 물 사용 패턴은 수요량을 예측하여 취수량을 결정하는데 있어 매우 중요한 지표이다. 생활용수 추정은 용도별(가정용, 상업용, 공업용 등)로 분류하여 경향성이 나타날 수 있도록 과거 사용실적을 바탕으로 장래 용도별 사용량을 추정한다. 이는 경험을 바탕으로 한 것으로 일반적으로 시계열 모형을 이용하는데 수요예측의 실패 가능성이 높으며 효율적인 방법이라 할 수 없다. 이에 본 연구에서는 최근 통신기술의 발달로 양방향 통신이 가능한 AMI(Advanced Metering Infrastructure, 원격검침인프라)센서를 영종도 112블록의 528개의 수용가에 설치하였다. AMI는 스마트 미터에서 측정한 데이터를 원격 검침기를 통해 물 사용량을 자동으로 계측할 수 있다. AMI 데이터를 이용하여 영종도 112블록의 운북동과 운서동의 각 용도별, 요일별, 그리고 도심지와 농가의 실시간 물 사용 패턴을 분석하였다. 분석 결과 운북동과 운서동의 물 사용 패턴은 비슷한 경향을 보이는 것으로 보이나 도시화된 운서동에 비해 운북동의 물사용량이 상대적으로 적고 첨두사용량의 발생시간 또한 빠른 것으로 나타났다. 또한 가정용과 공공용의 경우 시간별 물 사용량이 요일에 따라 일정한 경향이 있으나 상업용과 공업용은 일정한 사용량을 보였다. 향후 112블록의 관망해석에 실시간 물사용 패턴을 적용하여 효율적으로 급수량 결정을 할 수 있을 것으로 사료된다.
도로의 그룹핑(Grouping)이란 도고 계획, 설계, 관리, 조사 계획 및 정비 방침 등을 세우기 위해 유사한 성격의 도로 구간을 군집화하는 방법이다. 기존에 일반적으로 적용되고 있는 도로 그룹핑 방법은 그룹 수를 미리 지정함으써 분석가의 주관적 판단이 개입되었고, 그룹핑 변수 선정에 대한 근거가 부족하였다. 이에 본 연구에서는 기존에 일반적으로 적용되고 있는 도로 그룹핑 방법을 개선하여 새로운 방법론을 제시하였다. 또한 새로 제시된 방법론의 검증을 위해 도로 교통량 통계연보에서 제공하고 있는 일반국도의 2000년 294개 상시조사 지전의 교통량 자료를 이용하여 분석하였다. 연구 결과 기존의 월, 요일 변동계수만을 적용한 그룹핑 방법보다는 기타 교통지표(AADT, $\Sigma$K1000(K값의 상위 1000번 순위까지의 누적 값), 중차량 비율, 주야율)를 동시에 적용할 때 좀 더 효율적이면서 세부적으로 분류됨을 알 수 있었다. 또한 기타 교통지표론 적당한 그룹핑 결과로는 5그룹의 국도 기능 분류가 가능함을 알 수 있었다. 그 결과 기존의 소재지역과 기능에 따른 국토의 구분을 지방 산업도로 그룹, 지역 간선도로 그룹, 대도시 주변형 도로 그룹, 중소도시 주변형 및 관광도로 그룹, 관광도로 그룹으로 분류할 수 있었다. 본 연구에서의 도로 그룹핑 결과에 각 지역특성을 추가하여 분석한다면 도로의 계획, 선계, 관리 등에 매우 유용한 자료로 활용되리라 예상한다. 또한 본 연구의 결과를 이용하면 좀 더 효율적으로 설계시간계수 선정, 전역 조사 지점의 AADT추정, 상시 교통량 조사 자료의 누락 데이터 보정 및 교통량 조사의 스케줄링에 많이 활용할 수 있을 것으로 기대된다.
모바일 장비에서 수집되는 정보는 개인의 기억을 보조하기 위한 수단으로 활용될 수 있지만, 그 양이 너무 많아 사용자가 효과적으로 검색하기에는 어려움이 있다. 데이터를 사람의 기억과 유사한 에피소드 방식으로 저장하기 위해 중요 이벤트인 랜드마크를 탐지하는 것이 필요하다. 본 논문에서는 사용자에게 새로운 서비스를 제공하기 위해서 다양한 컨텍스트 로그 정보로부터 자동으로 랜드마크를 찾아내는 속성별 베이지안 랜드마크 예측 모델을 제안한다. 랜드마크 예측 정확도를 높이기 위해 요일별, 주간별로 데이터를 나누고 다시 수집된 경로에 따른 속성으로 분류하여 학습을 통해 베이지안 네트워크를 생성하였다. 노키아의 로그데이터로 실험한 결과, 베이지안 네트워크를 사용한 방법이 SVM을 사용한 방법보다 예측성능이 높았으며, 주간별 및 요일별로 설계한 베이지안 네트워크에 비해 제안한 방법인 속성별 베이지안 네트워크의 성능이 가장 우수하였다.
금융정보시스템의 효율적인 운영을 위해서는 사전 예방관리를 기반으로 한 위험 대처능력의 향상이 매우 중요하다. 위험 대처능력을 향상하기 위해서는 기 발생된 위험에 대한 철저한 이해와 분석 및 대책 수립은 필수적이다. 본 연구에서는 금융정보시스템의 정보계, 계정계, 업무계 및 매매체결시스템에서 발생한 4년 5개월간의 장애 데이터를 도메인, 장애요소, 기간 및 요일, 개발단계 및 장애 원인별로 분류 분석하였다. 분석 결과 장애 데이터가 개발단계, 요일, 그리고 원인 별 특성과 추이를 가지고 있음을 확인 하였으며, 정보시스템 간 업무의 연관성으로 인하여 금융 도메인 전체의 위험관리를 위한 위험예보모델 구축의 필요성이 발견되었다.
도시 생활용수 수요는 생활 수준 향상, 도시화 등으로 지속적 증가 추세에 있으며, 최근 기후변화, 시설 노후화, 도시화, 그리고 수질 오염 등의 문제들에 직면해 있다. 이는 물 부족을 심화시켜 현행 상수도시스템에서 한정적인 수자원을 배분하는데 어려움을 가중시킨다. 이를 해결하기 위해 스마트워터그리드 기술이 상수도시스템에 도입이 되면서 지능형 상수도 계량기를 이용한 개별 소비자들의 물 소비량 자료를 보다 정밀하게 실시간으로 모니터링 할 수 있게 되었다. 실시간 실측을 바탕으로 한 물 소비량 자료는 미래 용수 수요 예측과 수운영 관리에 도움을 줄 수 있다. 한편 생활용수는 용도 또는 요금 부과 기준에 따라 가정용, 업무용, 영업용, 욕탕용, 그리고 공업용으로 분류할 수 있다. 미국과 호주 등에서는 용도 분류에 따른 모니터링 강화로 절수 방안을 개발하여 물 부족에 대비하고 있다. 우리나라도 비 가정용수(가정용수를 제외한 용수들)를 체계적으로 분류하기 위한 선행 연구들이 이뤄졌으나 분류체계가 표준화되지 않았는데, 이는 용도에 따른 개별 소비자들의 소비 특성 분석이 충분히 선행되지 않았기 때문이며, 아직까지 많은 지자체에서 물 소비량을 월 단위로 인력검침 하는데 의존하고 있어, 충분한 물 소비량 자료가 부족했기 때문이다. 본 연구에서는 영종도 112 블록에 구축된 스마트워터그리드 파일롯플랜트 527개 개별 소비자들로부터 2018년 1월 1일부터 2020년 1월 1일까지 1시간단위로 수집된 물 소비량 자료를 이용하여, 개별 소비자들의 일평균 첨두 소비량과 발생 시간, 관경, 요일, 계절에 따른 물 수요 특성 분석을 수행했다. 이 때 수집된 자료의 결측치 및 오측치를 보정하여 자료의 신뢰성을 높이고자 했다. 분석결과는 용도별 물 수요 특성을 보다 잘 이해할 수 있게 도와주며, 비가정용수의 용도별 분류에 기초자료로 사용될 수 있을 것이라 사료된다.
본 논문에서는 철도 수요예측 문제의 유형을 목적에 따라 3가지로 분류하였고, 최근 철도자원을 재고관리 차원에서 접근하고자 하는 시각에 따라 분배모형으로써 적응필터를 사용하는 방법의 타당성에 대해 설명하였다. 또 철도 승객수요의 주요 특징을 분석하였으며, 철도 승객수요 예측의 요구사항 및 방법론을 대규모 재고관리 시스템의 일반적 요구사항에 따라 정리하였다. 영향인자에 대한 분석으로 요일별 계절변동 지수를 정량적으로 산정하였다. 적응필터를 이용한 철도 승객수요 예측의 예제를 제시하였으며, 예측에의 정확성에 대한 비교를 제시하였다.
본 논문의 목적은 DSRC 기반 통행속도 이력데이터를 활용하여 IC-IC 구간 단위의 통행패턴을 도출하는 것이며, 이를 통해 방대한 이력정보 데이터의 활용도를 높이고, 단순하지만 정확성 높은 방법으로 도로의 통행패턴을 용이하게 파악할 수 있게 하는 것이다. 통행패턴 분류는 의사결정나무 기법을 적용하였고, 월 시간대 구간 단위로 분리된 통행패턴을 생성하여 시 공간이 변화되어도 이에 대응 가능하도록 하였다. 경부고속도로 서울TG~안성IC 구간을 대상으로 의사결정나무 기법을 적용한 결과, 요일 기준으로 (월)(화 수 목)(금)(토)(일) 5개 그룹으로 고정 통행패턴이 분류되었다. 분류 결과를 영동, 중부, 중부내륙 고속도로의 9개 구간에 적용하여 통계적 검증을 수행한 결과 약 93%의 적합도를 갖는 것으로 나타났다. 의사결정나무를 통한 통행패턴 오차를 개선하기 위하여 4개의 추가변수를 도입한 결과, "직전월의 소통상황"을 설명변수로 추가할 경우 통행속도 분산이 약 50% 감소함을 확인하였고, 실제 상황에 적용할 경우 소통 원활 시의 오차가 약 4% 감소되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.