• Title/Summary/Keyword: 요약

Search Result 10,919, Processing Time 0.038 seconds

Backward Abstract Arithmetic Operations for Integer Congruence Analysis (정확한 정수 합동 분석을 위한 역방향 요약 연산자 정의)

  • 서선애
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.652-654
    • /
    • 2002
  • 정수 합동 분석(integer congruence analysis)은 프로그램 변수들의 의미 영역을 정수 합동(integer congruence) 집합으로 정의하여 분석한다. 정수 합동 분석을 위한 정수 합동 격자(lattice of integer congruences)와 순방향 요약 산술 연산자에 대한 정의는 이미 p. Granger에 의해 소개되었다. 하지만, 분석의 정확도에 영향을 미치는 역방향 요약 산술 연산자에 대한 연구는 아직 되어 있지 않다. 이 논문에서는 정수 합동 분석을 위한 역방향 요약 산술 연산자를 정의한다. 역방향 요약 산술 연산자를 정의하는 방법은 정수 방정식을 푸는 방법을 기반으로 고안되었다. 정의된 역방향 요약 산술 연산자는 프로그램 분석의 정확도를 높이는데 기여를 할 수 있는데, 이 논문에서는 예제를 통해서 이 사실을 보인다.

  • PDF

A Study on Skimming of News Article for an Efficient Browsing (효과적인 브라우징을 위한 뉴스 기사 요약에 관한 연구)

  • 이주호;정승도;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.219-222
    • /
    • 2000
  • 수많은 종류의 비디오 데이터를 효율적으로 검색하기 위해서는 데이터를 분석하여 사용자에게 먼저 전체 비디오의 요약을 제시하는 것이 효과적이다. 본 논문에서는 기사 단위로 분할된 뉴스 기사 전체를 보여주지 않으면서도 기사의 내용을 왜곡됨이 없이 요약하여 효과적으로 사용자에게 보여주기 위한 방법을 제안한다. 본 논문에서는 사용자에게 시각적인 요약 정보를 앵커 프레임 추출 및 대표 프레임 추출을 통해 필름 스트림(film trip)의 형태로 제시하고, 기사를 소개하는 앵커의 첫 대사를 폐쇄 자막(closed-caption)을 이용하여 추출하여, 이를 기사의 내용에 대한 요약으로 필름 스트립과 같이 제시하도록 하였다. 앵커 프레임을 추출하기 위해 본 논문에서는 폐쇄 자막에서의 "앵커:" 태그가 존재하는 시간 구간과 동기된 프레임을 선정한다. 또한 대표 프레임은 공개형 자막(open-cpation)이 존재하는 프레임과 빈도에 기반한 가중치가 높은 .폐쇄 자막에서의 키워드와 동기된 프레임을 선정하도록 하였다. 본 논문의 뉴스 기사 요약 시스템은 시각적인 프레임제시와 함께 기사의 내용을 바탕으로 하는 기사 요약문을 같이 사용자에게 제공함으로써 기존의 필름 스트립형태만 제공하던 시스템에 비하여 사용자 중심의 지능형 요약 서비스가 가능함을 실험을 통해 보인다.

  • PDF

Pointer-Generator Networks for Community Question Answering Summarization (Pointer-Generator Networks를 이용한 cQA 시스템 질문 요약)

  • kim, Won-Woo;Kim, Seon-Hoon;Jang, Heon-Seok;Kang, In-Ho;Park, Kwang-Hyun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.126-131
    • /
    • 2018
  • cQA(Community-based Question Answering) 시스템은 사용자들이 질문을 남기고 답변을 작성하는 시스템이다. cQA는 사용자의 편의를 위해 기존의 축적된 질문을 검색하거나 카테고리로 분류하는 기능을 제공한다. 질문의 길이가 길 경우 검색이나 카테고리 분류의 정확도가 떨어지는 한계가 있는데, 이를 극복하기 위해 cQA 질문을 요약하는 모델을 구축할 필요가 있다. 하지만 이러한 모델을 구축하려면 대량의 요약 데이터를 확보해야 하는 어려움이 존재한다. 본 논문에서는 이러한 어려움을 극복하기 위해 cQA의 질문 제목, 본문으로 데이터를 확보하고 필터링을 통해 요약 데이터 셋을 만들었다. 또한 본문의 대표 단어를 이용하여 추상 요약을 하기 위해 딥러닝 기반의 Pointer-generator model을 사용하였다. 실험 결과, 기존의 추출 요약 방식보다 딥러닝 기반의 추상 요약 방식의 성능이 더 좋았으며 Pointer-generator model이 보다 좋은 성능을 보였다.

  • PDF

A Study of Text Summarization Algorithm Using a Meaning Distortion (의미변화을 고려한 문서 요약 알고리즘 연구)

  • Lee, Jin-Kwan;Jang, Hae-Sook;Lee, Jong-Chan;Park, Sang-Joon;Park, Ki-Hong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.295-298
    • /
    • 2011
  • 스마트폰과 같은 소형 이동단말기의 보급이 확산됨에 따라서 이동단말을 통한 웹 접속이 크게 증가하고 있다. 따라서 작은 화면에 웹문서의 내용을 표현하기 위해 문서요약이 필요하다. 형태소 치환에 의한 문서요약 방법은, 문장해석에서 의미변화와 단축처리에서 일부 단락에 치우치는 문제가 발생한다. 본 논문에서는, 의미변화의 문제는 의미변화율이 낮은 순서에 따라 요약 규칙을 분류하고 이 순위에 따른 요약 알고리즘을 제안하였다. 치우치는 문제는 요약처리가 문서전체에 똑같이 적용되는 새로운 기준을 정의해 요약 알고리즘에 도입하였다. 제안방법의 유효성은 20명의 피실험자로 실험한 결과에 의해 입증되었다.

  • PDF

Query-Based Document Summarization using Important Sentence Selection Heuristics and MMR. (중요 문장추출 휴리스틱과 MMR을 이용한 질의기반 문서요약.)

  • Kim, Dong-Hyun;Lee, Seung-Woo;Lee, Gary Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.285-291
    • /
    • 2002
  • 본 논문은 자연어 검색엔진에서의 검색결과에 대한 HIT LIST[6]와 검색 문서의 요약을 위하여 질의 기반의 3단계 문서요약을 제안한다. 첫째단계로 IR에 주어지는 질의를 유의어 DB를 통해 질의확장을 거친다. 둘째로 질의와 검색문서상의 문장의 유사도 계산을 통해 문장의 중요도 점수를 구한다. 좀더 정확한 요약을 위해 4가지 방법론을 적용하여 각 문장의 중요도를 ranking한다. 셋째로 MMR (Maximal Marginal Relevance)방식을 적용하여 요약 시 중복이 되는 부분을 줄인다. 이때 요약 압축률을 임의로 조절할 수 있다. 실험은 KORDIC의 신문기사로 구성된 문서요약 테스트 집합을 사용하여 좋은 요약결과를 얻었다.

  • PDF

KMSS: Korean Media Script Dataset for Dialogue Summarization (대화 요약 생성을 위한 한국어 방송 대본 데이터셋 )

  • Bong-Su Kim;Hye-Jin Jun;Hyun-Kyu Jeon;Hye-in Jung;Jung-Hoon Jang
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.198-204
    • /
    • 2022
  • 대화 요약은 다중 발화자와 발화문으로 이루어진 멀티턴 형식의 문서에 대해 핵심내용을 추출하거나 생성하는 태스크이다. 대화 요약 모델은 추천, 대화 시스템 등에 콘텐츠, 서비스 기록에 대한 분석을 제공하는 데 유용하다. 하지만 모델 구축에 필요한 한국어 대화 요약 데이터셋에 대한 연구는 부족한 실정이다. 본 논문에서는 생성 기반 대화 요약을 위한 데이터셋을 제안한다. 이를 위해 국내 방송사의 대용량 콘텐츠로 부터 원천 데이터를 수집하고, 주석자가 수작업으로 레이블링 하였다. 구축된 데이터셋 규모는 6개 카테고리에 대해 약 100K이며, 요약문은 단문장, 세문장, 2할문장으로 구분되어 레이블링 되었다. 또한 본 논문에서는 데이터의 특성을 내재화하고 통제할 수 있도록 대화 요약 레이블링 가이드를 제안한다. 이를 기준으로 모델 적합성 검증에 사용될 디코딩 모델 구조를 선정한다. 실험을 통해 구축된 데이터의 몇가지 특성을 조명하고, 후속 연구를 위한 벤치마크 성능을 제시한다. 데이터와 모델은 aihub.or.kr에 배포 되었다.

  • PDF

Development and Evaluation of a Document Summarization System using Features and a Text Component Identification Method (텍스트 구성요소 판별 기법과 자질을 이용한 문서 요약 시스템의 개발 및 평가)

  • Jang, Dong-Hyun;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.678-689
    • /
    • 2000
  • This paper describes an automatic summarization approach that constructs a summary by extracting sentences that are likely to represent the main theme of a document. As a way of selecting summary sentences, the system uses a model that takes into account lexical and statistical information obtained from a document corpus. As such, the system consists of two parts: the training part and the summarization part. The former processes sentences that have been manually tagged for summary sentences and extracts necessary statistical information of various kinds, and the latter uses the information to calculate the likelihood that a given sentence is to be included in the summary. There are at least three unique aspects of this research. First of all, the system uses a text component identification model to categorize sentences into one of the text components. This allows us to eliminate parts of text that are not likely to contain summary sentences. Second, although our statistically-based model stems from an existing one developed for English texts, it applies the framework to individual features separately and computes the final score for each sentence by combining the pieces of evidence using the Dempster-Shafer combination rule. Third, not only were new features introduced but also all the features were tested for their effectiveness in the summarization framework.

  • PDF

An Experimental Study on Automatic Summarization of Multiple News Articles (복수의 신문기사 자동요약에 관한 실험적 연구)

  • Kim, Yong-Kwang;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.1 s.59
    • /
    • pp.83-98
    • /
    • 2006
  • This study proposes a template-based method of automatic summarization of multiple news articles using the semantic categories of sentences. First, the semantic categories for core information to be included in a summary are identified from training set of documents and their summaries. Then, cue words for each slot of the template are selected for later classification of news sentences into relevant slots. When a news article is input, its event/accident category is identified, and key sentences are extracted from the news article and filled in the relevant slots. The template filled with simple sentences rather than original long sentences is used to generate a summary for an event/accident. In the user evaluation of the generated summaries, the results showed the 54.l% recall ratio and the 58.l% precision ratio in essential information extraction and 11.6% redundancy ratio.

A Video Abstraction Algorithm Reflecting Various Users Requirement (사용자의 요구를 반영하는 동영상 요약 알고리즘)

  • 정진국;홍승욱;낭종호;하명환;정병희;김경수
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.599-609
    • /
    • 2003
  • Video abstraction is a process to pick up some important shots on a video, while the important shots might vary on the persons subjectivity. Previous works on video abstraction use only one low level feature to choose an important shot. This thesis proposes an abstraction scheme that selects a set of shots which simultaneously satisfies the desired features(or objective functions) of a good abstraction. Since the complexity of the computation to find a set of shots which maximizes the sum of object function values is $0({2^n})$, the proposed .scheme uses a simulated annealing based searching method to find the suboptimal value within a short period of time. Upon the experimental results on various videos, we could argue that the proposed abstraction scheme could produce a reasonable video abstraction. The proposed abstraction scheme used to build a digital video library.

A Text Summarization Model Based on Sentence Clustering (문장 클러스터링에 기반한 자동요약 모형)

  • 정영미;최상희
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.3
    • /
    • pp.159-178
    • /
    • 2001
  • This paper presents an automatic text summarization model which selects representative sentences from sentence clusters to create a summary. Summary generation experiments were performed on two sets of test documents after learning the optimum environment from a training set. Centroid clustering method turned out to be the most effective in clustering sentences, and sentence weight was found more effective than the similarity value between sentence and cluster centroid vectors in selecting a representative sentence from each cluster. The result of experiments also proves that inverse sentence weight as well as title word weight for terms and location weight for sentences are effective in improving the performance of summarization.

  • PDF