• Title/Summary/Keyword: 와류강도

Search Result 82, Processing Time 0.025 seconds

Section Model Study on the Aerodynamic Behaviors of the Cable-Stayed Bridges with Two I-Type Girders Considering Structural Damping and Turbulence Intensity (2개의 I형 거더를 가진 사장교의 구조감쇠비 및 난류강도를 고려한 공기역학적 거동에 관한 단면모형실험 연구)

  • Cho, Jae-Young;Kim, Young-Min;Cho, Young-Rae;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1013-1022
    • /
    • 2006
  • Although the cable-stayed bridges with two I-type girders inherently do not have good aerodynamic characteristics, a lot of the bridges with this type girders are constructed in Korea recently because of an economical merit. This paper investigated the aerodynamic characteristics of the cable-stayed bridges with two I-type girders. Section model tests were conducted in order to investigate the aerodynamic behaviors of this section with varying of the angles of attack, turbulence intensity and damping ratios. Two deck section configurations with different torsional stiffness were studied under construction and after completion respectively. Three types of the fairings were investigated to improve the aerodynamic characteristics of the bridges. The result of this study showed that the traditional section model test in uniform flow estimates the aerodynamic behavior rather pessimistically. The wind induced responses of the bridges were severely varied in accordance with the turbulence intensity and the structural damping ratio. The proposed fairing reduced the magnitude of the vortex-shedding vibrations and buffeting responses. It also increased the wind speed at which flutter occurs. It is expected that these investigations would provide a lot of information for the design of the cable stayed bridges with two I-type girders regarding wind resistance.

An Application of Solenoid Eddy Current Sensor for Nondestructively Inspecting Deterioration of Overhead Transmission Lines due to Forest Fires (산불에 의한 가공송전선의 열화특성을 비파괴적으로 검출하기 위한 솔레노이드 와류센서의 응용)

  • Kim, Sung-Duck;Kim, Young-Dal;Jeong, Dong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.404-415
    • /
    • 2000
  • This paper describes several performances and nondestructive inspection for deterioration due to forest fires in overhead transmission lines. After discussing corrosion mechanism such as atmospheric and galvanic corrosion for aged ACSR conductors and its detection for them are presented. Through impedance analysis of a solenoid coil, it is shown that the eddy current sensor may be available to inspect severe fault or local corrosion. As the solenoid coil changes its impedance when the test conductor is inserted into the coil, it can be possible to measure deterioration degree caused by forest fires. Tensile strength, extension rate and sensor impedance are tested for some samples degraded by artificial fire. As increasing blazed period to some extent, the strength of aluminum strand begins to be reduced remarkably, while galvanized steel strand holds the similar strength to the initial value, despite of appearing a little loss of zinc layer. In general, it is shown that the sensor impedance would be increased while the tension load of conductor is reduced and the extension rate is contrarily increased. Therefore, the sensor output could exhibit the changes of mechanical performances, and would be used to detect such deterioration caused by forest fire in ACSR conductors built on the ridge of mountains. Finally, it was verified that the solenoid coil could be applicable to obtain any crucial inform for serious deterioration due to forest fires.

  • PDF

A Study on Thrust Generation by Simultaneous Flapping Airfoils in Tandem Configuration (동시에 플래핑하는 직렬배치 익형의 추력 생성 연구)

  • Lee, Gwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.32-41
    • /
    • 2006
  • In this study, the thrust generation by simultaneous flapping airfoils in tandem configuration is parametrically studied with respect to flapping frequency, amplitude and relative location. Navier-Stokes solver with overset grid topology is employed to calculate the unsteady flowfields. The computation results indicate that when the two airfoils stroke in-phase - flapping phase lag is zero - the maximum propulsive efficiency and thrust can be obtained for most frequency and amplitude range. At a flapping amplitude of 0.2 chord and a reduced frequency of 0.75, the propulsive efficiency of aft airfoil is enhanced by about 37 % compared with that of forward airfoil. However, if flapping frequency exceeds some critical value, the strength of the leading edge vortex of aft airfoil is fortified by the trailing edge vortex of the forward airfoil, resulting in poor propulsive efficiency. It is also found that out-of-phase flapping has relatively low propulsive efficiency and thrust since vortical wake of the forward airfoil interacts with the leading edge vortex of aft airfoil in the unfavorable fashion. The total thrust and propulsive efficiency are shown to decrease with the horizontal miss distance of the aft airfoil. On the contrary, the vertical miss distance has little effect on the overall aerodynamic performance.

PIV Measurements of Wake behind a KRISO 3600TEU Container Ship Model (PIV를 이용한 KRISO 3600TEU 컨테이너선모형선의 반류 측정 및 해석)

  • Sang-Joon Lee;Min-Seok Koh;Choung-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.48-56
    • /
    • 2002
  • The flow characteristics around KRISO 3600TEU container ship model have been experimentally investigated in a circulating water channel. The instantaneous velocity vectors were measured using 2-frame PIV measurement system. The mean velocity fields and turbulent statistics including turbulent kinetic energy and vorticity were obtained by ensemble-averaging 400 instantaneous velocity fields. The free stream velocity was fixed at 0.6m/s and the corresponding Reynolds number was $9{\times}10^5$. The test sections were divided into two regions, three transverse sections of the wake region(Station -0.5767, -1, -3) and five longitudinal sections of the wake((Z/(B/2)=0, 0.1, 0.2, 0.4, 0.6). In the wake region, large-scale longitudinal vortices of nearly same strength are symmetric with respect to the wake centerline and a relatively weak secondary vortex is formed near the waterline. With going downstream, the strength of longitudinal vortex is decreased and the wake region expands.

Fluid flow and heat transfer around tubes arranged in line (일행관군에서의 유동특성과 열전달현상에 관한 연구)

  • 부정숙;조석호;정규하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1603-1612
    • /
    • 1990
  • An experimental study is conducted to investigate the fluid flow and heat transfer around tubes arranged in line. All measurements are performed at Reynolds number 1.58*10$^{4}$ with varing tube spacings from the small pitch ratio(L/D=1.25) to the large pitch ratio(L/D=3.0). Mean static pressures and mean temperatures of the surface of tubes and mean velocities and turbulent intensities in tube banks are measured. The flow patterns and the characteristics of heat transfer are strongly influenced by the tube spacings. Especially, in the case of very small spacings(L/D=1.25), the flow between neighboring tubes becomes very stagnant and the heat transfer decreases. In the case of each tube spacing, the characteristics of heat transfer around the 3rd, the 4th and the 5th tubes are nearly similar to one another, because the flow around tubes becomes stable at the 3rd tubes. The local heat transfer has the peak value near the reattachment point which has the peak value of pressure, but the local heat transfer for the 2nd tube of L/D=1.25 without reattaching has the peak value at .theta.=75.deg.. For each pitch ratio, the mean heat transfer increases gradually toward the downstream tubes, because the oncoming flow through neighboring tubes comes closer to the forward and rear surfaces of the tube and the turbulent intensity becomes larger in the downstream direction.

Turbulent Couette Flow between Coaxial Cylinders with Inner Cylinder Rotating (내측원관이 회전하는 동심이중원관 사이의 난류 쿠에트 유동에 관한 연구)

  • 김광용;김진욱;조용철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.540-546
    • /
    • 1992
  • Turbulent Couette flow between coaxial cylinders with inner one rotating has been investigated experimentally and numerically. The radius ratio of the coaxial cylinders is 0.43. Mean velocity and turbulent stresses have been measured by hot-wire anemometer in the range of Reynolds number based on the velocity at rotating wall and the radial distance between walls, 60,900-187,000. For the numerical computation, the Reynolds stress model has been used as a turbulence closure model. Measurements of mean velocity show that the velocity profile of wall layer largely deviates from universal logarithmic law due to the effect of streamline curvature, especially in the region near the stationary outer cylinder. The results computed with the Reynolds stress model agree well with the experimental data in the prediction of circumferential intensity of turbulent fluctuations. However, the computed level of radial intensity is much higher than the measurement. Curvature-corrected versions of the Reynolds stress model improves the prediction of turbulent intensities, but the results are not fully satisfactory.

Numerical Investigation of Ground Effect of Dual Ducted Fan Aircraft During Hovering Flight (제자리 비행하는 이중 덕트 팬 비행체의 지면 효과에 대한 수치적 연구)

  • Lee, Yujin;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.677-690
    • /
    • 2022
  • By using an actuator disk method based flow solver, aerodynamic analysis is carried out for a dual ducted fan aircraft, which is one of the VTOL compound aircrafts, and its associated ground effect is analyzed. The characteristics and accuracy of the solver for ground effect analysis is evaluated through a comparison with the results obtained from the sliding mesh technique. The aerodynamic performance and flow field characteristics with respect to the distance from the ground are analyzed. As the ground distance decreases, the fan thrust increases, but the deterioration of total normal force and hovering flight efficiency is identified owing to the decrease in the vertical force of the duct, fuselage, and wing. By examining the flow field in the bottom of the fuselage, the ground vortices and fountain flow generated by the interaction of the fan wake and ground are identified, and their influence on the aerodynamic performance is analyzed. The strength and characteristics of outwash with respect to the ground distance and azimuth direction are analyzed through comparison/examination of velocity profile. Influence of the ground effect with respect to collective pitch angle is also identified.

A Study on Beach Stabilization by Laying Drainage Layer (투수층 매설에 의한 해빈안정화에 관한 연구)

  • Hur, Dong-Soo;Lee, Woo-Dong;Jeon, Ho-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.325-335
    • /
    • 2010
  • The aim of this study is to survey the effects of laying drainage layer in sandy beach on beach stabilization. At first, the numerical model developed by Hur and Lee (2007), which is able to consider the flow through a porous medium with inertia, laminar and turbulent resistance terms, i.e. simulate directly WAve Structure Seabed/Sandy beach interaction and can determine the eddy viscosity with LES turbulent model in 3-D wave field (LES-WASS-3D), is validated by comparing with existing experimental data. And then, numerical simulation is carried out to examine the characteristics of wave-sandy beach interaction for a beach with/without drainage layer. From the numerical results, it is shown that mean ground-water level around a foreshore decreases and offshore-ward flow over a seabed reduces in case of a beach with drainage layer. Moreover, the effects of cross profile of drainage layer and incident wave condition on mean ground-water level around a foreshore are also discussed as well the distribution of wave setup around the foreshore.

Improvement of Fourier Transform Arteriography by Use of Ramped RF Profile and Dual Projections (경사 윤곽의 고주파 펄스와 이중 투사법에 의한 Fourier 변환 동맥 혈관 촬영법의 성능 향상)

  • Jung, K. J.;Kim, I. Y.;Lee, M. W.;Yi, Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2002
  • The Fourier transform arteriography (FTA) exploits the periodic variation of arterial flow velociety of arterial flow velocity in stnchronized with cardiac cycles. This technique is intrinsically unique compared to other modern techniques. This technique separates the arteries from the veins using the pulsatile arterial flow without using the presaturation RF pulses. Therefore, it has less RF deposition and is free from the dark band artifacts that can arise from retrograde flow and curved arteries. Furthermore, it is free from the artifacts induced by eddy currents. However, there are some drawbacks such as a single projection view and the saturation of arteries at the end of an imaging slab. These drawbacks are circumvented by applying recently developed techniques. The fast gradient switching capability of modern MRI systems enabled us to incorporate dual projection views into the conventional FTA sequence without increasing the repetition time. In addition, signals from the distal arteries were enhanced by use of a ramped RF pulse and therefore the distal arteries were less saturated. By use of the FTA sequence with dual projection views and the ramped RF pulse, we acquired the sagittal and coronal projection views of femoral arteriograms simultaneously with more enhanced signals of distal arteries than the conventional FTA.

  • PDF

Effect of Agitation Speed and Air Rate on Separation Efficiency in Fly Ash Flotation (플라이애시 부유선별 과정에서 교반속도와 공기주입량 변화에 따른 영향 연구)

  • Kim, Min Sik;Kang, Heon Chan
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • This study aimed to investigate the effects of mechanical factors such as agitation speed and air rate in fly ash flotation. Specifically, we used thermal power plant fly ash with unburned carbon content of 3.4 to 3.7%. The effect of pH, agitation speed, collector dosage, and frother dosage - the key factors of froth flotation - showed unburned carbon recovery and unburned carbon content of 63% and 34%, respectively, when the dosage of safflower oil used as collector was 800 g/ton, pH was 7, agitation speed was 1,200 rpm, and frother dosage was 400 g/ton. The SEM/EDS analysis of fly ash in that case indicated that the spherical fly ash particles lowered the unburned carbon content as they floated with the air bubbles without being dissolved in the unburned carbon or settled in the ore solution. The other experiment of changing the mechanical factors such as agitation speed and air rate resulted in unburned carbon recovery and unburned carbon content of 74% and 67%, respectively, at air rate of 8 L/min and agitation speed of 900 rpm. The recovery and unburned carbon content increased as the low agitation speed and additional air injection decreased the strength of the eddy current in the ore solution and consequently prevented the floating of fine fly ash particles with unburned carbon. In addition, the recovery rate and unburned carbon increased further to 80% and 70%, respectively, showing the best performance when the agitation speed and air rate were lowered to 800 rpm and 6 L/min, respectively.