DOI QR코드

DOI QR Code

Effect of Agitation Speed and Air Rate on Separation Efficiency in Fly Ash Flotation

플라이애시 부유선별 과정에서 교반속도와 공기주입량 변화에 따른 영향 연구

  • Kim, Min Sik (Department of Energy and Mineral Resources Engineering, Dong-A University) ;
  • Kang, Heon Chan (Department of Energy and Mineral Resources Engineering, Dong-A University)
  • 김민식 (동아대학교 공과대학 에너지.자원공학과) ;
  • 강헌찬 (동아대학교 공과대학 에너지.자원공학과)
  • Received : 2017.12.13
  • Accepted : 2018.02.05
  • Published : 2018.02.28

Abstract

This study aimed to investigate the effects of mechanical factors such as agitation speed and air rate in fly ash flotation. Specifically, we used thermal power plant fly ash with unburned carbon content of 3.4 to 3.7%. The effect of pH, agitation speed, collector dosage, and frother dosage - the key factors of froth flotation - showed unburned carbon recovery and unburned carbon content of 63% and 34%, respectively, when the dosage of safflower oil used as collector was 800 g/ton, pH was 7, agitation speed was 1,200 rpm, and frother dosage was 400 g/ton. The SEM/EDS analysis of fly ash in that case indicated that the spherical fly ash particles lowered the unburned carbon content as they floated with the air bubbles without being dissolved in the unburned carbon or settled in the ore solution. The other experiment of changing the mechanical factors such as agitation speed and air rate resulted in unburned carbon recovery and unburned carbon content of 74% and 67%, respectively, at air rate of 8 L/min and agitation speed of 900 rpm. The recovery and unburned carbon content increased as the low agitation speed and additional air injection decreased the strength of the eddy current in the ore solution and consequently prevented the floating of fine fly ash particles with unburned carbon. In addition, the recovery rate and unburned carbon increased further to 80% and 70%, respectively, showing the best performance when the agitation speed and air rate were lowered to 800 rpm and 6 L/min, respectively.

플라이애시의 부유선별 과정에서 교반속도와 공기주입량과 같은 기계적 요소 변화에 따른 영향을 알아보고자 본 연구를 실시하였다. 본 연구에서는 미연탄소 함량이 약 3.4 ~ 3.7% 수준인 화력발전소 플라이애시를 사용하였다. 대표적인 부유선별의 선별 요소인 pH, 교반속도, 포수제 첨가량, 기포제 첨가량 변화에 따른 영향을 살펴보았을 때, Safflower oil을 포수제로 사용하여 첨가량을 800 g/ton, pH 7, 교반속도 1,200 rpm, 기포제 첨가량이 400 g/ton였을 때, 미연탄소 회수율과 미연탄소 함량이 각각 63%, 34%로 나타났다. 이 때 부상물 SEM/EDS 분석을 통해 알아본 결과, 구형의 플라이애시 미립자가 미연탄소 내에 고용되거나, 광액 내에 가라앉지 못하고 기포와 함께 부유함으로써 미연탄소의 함량을 낮추는 것으로 나타났다. 교반속도와 공기주입량과 같은 기계적 요소를 변화시킨 실험에서는 공기주입량 8L/min, 교반 속도 900 rpm에서 미연탄소 회수율 74%, 미연탄소 함량 67%인 것으로 나타났다. 이는 낮은 교반속도와 추가 공기주입으로 인하여 광액 내 와류의 강도가 낮아져, 미립의 플라이애시 입자가 미연탄소와 함께 부유되는 현상을 방지됨으로써, 미연탄소 회수율과 미연탄소 함량이 향상된 것으로 나타났다. 또한, 교반속도와 공기주입량을 각각 800 rpm, 6 L/min으로 설정하였을 때 미연탄소 회수율과 미연탄소 탄소함량이 각각 80%, 70%로 향상되어 가장 우수한 것으로 나타났다.

Keywords

References

  1. R. Miles Anthony et al., 1975 : The effect of particle size on the activation and flotation of sphalerite, Proc. Australas. Inst. Min. Metal, 254, pp.47-58.
  2. A. W., Kelsall, D. F., Restarick, C. J., Stewart, P. S. B., 1971 : A detailed assessment of concentrator performance at Broken Hill South Limited, Proc. Australas. Inst. Min. Metall, 240, pp.53-67.
  3. B. Shahbazi, B. Rezai, S. M., Javad Koleini, 2010 : Bubble-particle collision and attachment probability on fine particles flotation, Chemical Engineering and Processing: Process Intensification, 49, pp.622-627. https://doi.org/10.1016/j.cep.2010.04.009
  4. W. J. Trahar, 1976 : The selective flotation of galena from sphalerite with special reference to the effects of particle size, International Journal of Mineral Processing. 3, pp.151-166. https://doi.org/10.1016/0301-7516(76)90031-4
  5. W. J. Trahar and L. J. Warren, 1976 : The floatability of very fine particles-a review, International Journal of Mineral Processing, 3, pp.103-131. https://doi.org/10.1016/0301-7516(76)90029-6
  6. B. A. Wills, 1998 : Mineral Processing Technology, 4th edition, Pergamon, New York.
  7. A. M. Gaudin, J. O. Groh, and H. B. Henderson, 1931 : Effect of Particle Size on Flotation, American Institute of Mining and Metallurgical Engineering, Tech, 414, pp.3-23.
  8. W. J. Trahar, 1981 : A rational interpretation of the role of particle size in flotation, International Journal of Mineral Processing, 8, pp.289-327. https://doi.org/10.1016/0301-7516(81)90019-3
  9. H. R. Spedden and W. S. Hannan, 1984 : Attachment of mineral particles to air bubbles in flotation, Mineral Technology, 12, pp.23-54.
  10. P. F. Whelan and D. S. Brown, 1956 : Particle-bubble attachment in froth flotation, Transactions of the Institute of Mining and Metallurgy, 65, pp.181-192.
  11. D. A. Deglon, F. Sawyerr, C. T., and O'Connor, 1999 : A model to relate the flotation rate constant and the bubble surface area flux in mechanical flotation cells, Minerals Engineering, 12, pp.599-608. https://doi.org/10.1016/S0892-6875(99)00046-1
  12. Feng Zhou, et al., 2017 : The result of surfactants on froth flotation of unburned carbon from coal fly ash, Fuel Length Article, 190, pp.182-188.
  13. Bayat, O. and Toraman, O., 1996 : Separation of coal particles from Soma fly ash by flotation, Changing scopes miner process proc int miner process symp, 6, pp.469-473.
  14. Demir, U., et al., 2008 : Characterization and column flotation of bottom ashes from Tuncbilek power plant, Fuel, 87, pp.666-672. https://doi.org/10.1016/j.fuel.2007.05.040
  15. Huang, Y., Takaoka, M., and Takeda, N., 2003 : Removal of unburned carbon from municipal solid waste fly ash by column flotation, Waste Manage, 23, pp.307-313. https://doi.org/10.1016/S0956-053X(02)00069-7
  16. Harada Ichiro, 1994 : Knowledge of chemistry of fat and oil, pp.1-44, SAIWAI SHOBO, Japan.
  17. Seung-Woo Yoo, Hong-Kyu Park, and Moon-Young Jung, 2009 : Effect of the Oxidation of Fixed Carbon on the Oily Collector Addition for the Coal Briquette Ash Flotation, Journal of The Korean Society for Geosystem Engineering, 46(5), pp.582-588.
  18. Sung-Geun Son, Jung-Duk Kim, and Nyung-Wook Park, 1996 : Removal of Unburned-Carbon from fly ash of Bitunimous Coal by Froth Flotation, J. of Korean Inst. of Resources Recycling, 5(3), pp.44-49.
  19. Jung-Eun Lee, et al., 1999 : Properties of Carbon-Rich Particles and Purified Ash Obtained from Countercurrent Column Flotation, J. of Korean Inst. of Resources Recyling, 8(4), pp.1-9.
  20. Kwang-Hyun Bae, Jung-Il Yang, and Ho-Suk Cheon, 1999 : Removal of Unburned Carbon from Fly Ash by Froth Flotation, J. of Korean Inst of Resources Recycling, 8(3), pp.43-48.