• Title/Summary/Keyword: 온실제어

Search Result 212, Processing Time 0.025 seconds

Design of ICT based Protected Horticulture for Recovering Natural Disaster (ICT기반 시설원예 재해 경감장치 설계)

  • Lee, Meong-Hun;Yoe, Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.10
    • /
    • pp.373-382
    • /
    • 2016
  • Under the Agricultural technology is influenced from climate that is requisite of seasonal. So this system will cover the problems and develop the agricultural industry as well. So far, the agricultural industry is developing however, it has the points of the weakness because of natural disasters such as wind risk and heavy snow. This paper designs system to change vinyl on the greenhouse. This is a preliminary study for the real-time feedback control of greenhouse. The study developed a wireless IoT sensor system based on authentic technology capacities, to integrate with the protected horticulture Management System. These system was used to evaluate the levels of the snow cover and wind through IoT devices. The existing greenhouse uses the warm water to clear snow or to change methods. This system will recover by changing the vinyl which is covered outside of the greenhouse. The points of the system is changing vinyl to spin pipe. It is contained extra vinyl. The effects of this system are minimized labor protected crops from natural disasters. For this purpose, the study first developed a wireless IoT sensor unit that integrates an MEMS device and wireless communication module. Also, the study developed an operating program that enables real-time response measurement. It will help operational and maintenance greenhouse as a result.

Development of Multi-functional Tele-operative Modular Robotic System For Watermelon Cultivation in Greenhouse

  • H. Hwang;Kim, C. S.;Park, D. Y.
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.517-524
    • /
    • 2003
  • There have been worldwide research and development efforts to automate various processes of bio-production and those efforts will be expanded with priority given to tasks which require high intensive labor or produce high value-added product and tasks under hostile environment. In the field of bio-production capabilities of the versatility and robustness of automated system have been major bottlenecks along with economical efficiency. This paper introduces a new concept of automation based on tole-operation, which can provide solutions to overcome inherent difficulties in automating bio-production processes. Operator(farmer), computer, and automatic machinery share their roles utilizing their maximum merits to accomplish given tasks successfully. Among processes of greenhouse watermelon cultivation tasks such as pruning, watering, pesticide application, and harvest with loading were chosen based on the required labor intensiveness and functional similarities to realize the proposed concept. The developed system was composed of 5 major hardware modules such as wireless remote monitoring and task control module, wireless remote image acquisition and data transmission module, gantry system equipped with 4 d.o.f. Cartesian type robotic manipulator, exchangeable modular type end-effectors, and guided watermelon loading and storage module. The system was operated through the graphic user interface using touch screen monitor and wireless data communication among operator, computer, and machine. The proposed system showed practical and feasible way of automation in the field of volatile bio-production process.

Predictive Model of Micro-Environment in a Naturally Ventilated Greenhouse for a Model-Based Control Approach (자연 환기식 온실의 모델 기반 환기 제어를 위한 미기상 환경 예측 모형)

  • Hong, Se-Woon;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.181-191
    • /
    • 2014
  • Modern commercial greenhouse requires the use of advanced climate control system to improve crop production and to reduce energy consumption. As an alternative to classical sensor-based control method, this paper introduces a model-based control method that consists of two models: the predictive model and the evaluation model. As a first step, this paper presents straightforward models to predict the effect of natural ventilation in a greenhouse according to meteorological factors, such as outdoor air temperature, soil temperature, solar radiation and mean wind speed, and structural factor, opening rate of roof ventilators. A multiple regression analysis was conducted to develop the predictive models on the basis of data obtained by computational fluid dynamics (CFD) simulations. The output of the models are air temperature drops due to ventilation at 9 sub-volumes in the greenhouse and individual volumetric ventilation rate through 6 roof ventilators, and showed a good agreement with the CFD-computed results. The resulting predictive models have an advantage of ensuring quick and reasonable predictions and thereby can be used as a part of a real-time model-based control system for a naturally ventilated greenhouse to predict the implications of alternative control operation.

The Smart Outdoor Cultivation System using Internet of Things (사물인터넷을 이용한 지능형 노지 농작물 관리 시스템 개발)

  • Youm, Sungkwan;Hong, SungKwang;Koh, Wan-Ki
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.63-68
    • /
    • 2018
  • Research on smart farms centering on greenhouse cultivation is actively under way due to the decrease in agriculture population and aging, but in the case of vegetables such as vegetables, outdoor cultivation is 70%. Therefore, there is a need to improve productivity and prevent soil contamination by automating, cultivating, and intelligentizing the outdoor cultivation of agriculture crops. In this paper, we show the case of establishing a outdoor production system using the Internet of things and define the environmental variables in the outdoor production system. By measuring soil temperature, water content, electrical conductivity and acidity through sensors, LoRa communication module transmits the information to the outdoor production system. The outdoor production system controls the amount of fertilizer and the volume of water based on this sensor data. We have developed a system that manages a wide range of crops using LoRa technology, which is a suitable communication method for cultivating crops, and manages production volume and sales performance.

Comparative Analysis on the Delay Between Multi-legged Roundabout and Signalized Intersection (다지 회전교차로와 신호교차로의 지체 비교 분석)

  • Han, Su-San;Park, Byung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.83-93
    • /
    • 2010
  • The roundabout is a green transportation system which reduces the accident, the congestion cost and greenhouse effect. The purpose of the study is to analyze the multi-legged roundabout's efficiency. In pursuing the above, this study gives particular attention to building the optimal network of multi-legged roundabout and intersections, developing the scenarios for analysis reflected by the proportion of entering traffic volume of main and minor roads, and comparatively analyzing the average delay per car using VISSIM. The main results are as follows. First, when the entering traffic volume are less than 3,500pcph, the 5-legged single and double-lane roundabout are all analyzed to be more effective than intersection. Second, when the entering traffic volume are less than 3,600pcph, the 6-legged single-lane roundabout is analyzed to be more effective than intersection. The 6-legged double-lane roundabout is analyzed to be more effective than intersection. The 6-legged double-lane roundabout is analyzed to be more effective than intersection in all cases of entering volume.

Countermeasures for reduction for CO2 emission from training ship (운항실습선에 적용한 CO2 배출량 저감대책)

  • Lee, Sang-Deuk;Koh, Dae-Kwon;Jung, Suk-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.981-986
    • /
    • 2015
  • As the seriousness of global environment pollution is gaining increasing public attention, research into greenhouse gas emissions of ships is being carried out globally. At a domestic level, however, in a number of significant fields such research has not been conducted to date. This study examined countermeasures for the reduction of $CO_2$ emission in the fields of electronic control engines, trim optimization, propeller polishing, hull cleaning, and anti-fouling paint using an actual sea-going vessel. Selected countermeasures were applied during sea trials of the ship and the effect of specific fuel oil consumption analyzed. It was found that each countermeasure resulted in a decrease of fuel consumption of 1~5%. The energy efficiency operational indicator (EEOI) was calculated and found to also be improved by 1~5%. Further research into the EEOI of domestic shipping is planned to enhance conformance with international environmental regulations and improve global competitiveness.

Effects of Method, Number of Times for Spraying and! Ventilation Condition on the Growth in Greenhouse (관수방법, 관수회수 및 송풍처리에 따른 초화류의 생장에 미치는 영향)

  • 민병로;김웅;이범선;이대원
    • Journal of Bio-Environment Control
    • /
    • v.13 no.3
    • /
    • pp.149-155
    • /
    • 2004
  • On this study, a multipurpose operating system was developed to adjust a configuration of a moving path which have no connection with a form of greenhouse. To being performance the multipurpose working system, we have experienced growth quality on the plants in greenhouse. Some of the results are as follows. While watering by the hand spray. the condition of plant was generally no good. It was shown that plant height and leaf area were all high without wind during watering by the automatic spray. The effect to retrain a plant growth was high as a ventilation was strong. The diameter of a plant stem was small without ventilation condition during watering 3 times by automatic spray. The number of leaf was relatively large during 3 times by automatic spray compared to 2 times by automatic spray or hand spray. Growth of plant was fast as the times of spray were large.

Comparison of simulation and Actual Test for ACC Function on Real-Road (실도로에서의 ACC 기능에 대한 시뮬레이션과 실차시험 비교 평가)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.457-467
    • /
    • 2020
  • Increasing environmental concerns have prompted countries around the world to tighten regulations on greenhouse gases and fuel efficiency. Research is being done using advanced driver assistance systems to improve fuel economy and for the convenience of drivers. Research on systems such as adaptive cruise control (ACC), LKAS, and AEB is active. The purpose of ACC is to control the longitudinal speed and distance of the vehicle and minimize the driver's load, which is considered useful for accident prevention. From this point of view, research has used a mathematical method of safety evaluation as a function of distances and scenarios while considering domestic road environments. A vehicle is tested with a simulation in a proposed scenario. The purpose of the analysis is to verify the functional safety of ACC by comparing the theoretical calculations using theoretical equations, the relative distances in the simulation, and an actual vehicle test. These methods are expected to enable many companies to use scenarios, formulas, and simulations as safety verification methods in the development of ACC.

Evaluation of Fatigue Life of Electro-Mechanical Actuator for Front Wheel Steering (전륜 조향용 전기식 작동기 피로수명 평가)

  • Young-Cheol Kim;Hyun-gi Kim;Dong-Hyeop Kim;Sang-Woo Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2023
  • Recently, the consideration of eco-friendly technology to reduce greenhouse gas is being emphasized in the aviation field. Various studies for applying electro-mechanical actuators that control mechanical linear and rotational movements using electricity as the primary power source are in progress. In this study, the fatigue analysis of the electro-mechanical actuator for the front wheel steering of a single aisle aircraft was carried out. A unit load stress table was constructed for the vulnerable part selected through structural analysis, and the representative stress for each load profile was calculated using the unit load stress table constructed for the vulnerable part. Then, individual profiles of representative stress group were extracted from continuous load profiles by applying the rainflow counting method. The damage of each profile was calculated by applying the S-N diagram. Finally, the total damage in the vulnerable parts was calculated by the linear cumulative damage law, and the fatigue life of the electro-mechanical actuator for the front wheel steering of a single aisle aircraft was evaluated.

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System (고설 딸기 관부 난방시스템의 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kwon, Jin Kyung;Kang, Youn Koo;Lee, Jae Han;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.420-428
    • /
    • 2019
  • This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).