• Title/Summary/Keyword: 온실관리

Search Result 548, Processing Time 0.032 seconds

Comparison of Construction Cost Applied by RC and PC Construction Method for Apartment House and Establishment of OSC Economic Analysis Framework (공동주택 RC 및 PC공법 적용 공사비 비교 및 OSC의 포괄적 경제성 분석 프레임워크 구축)

  • Yun, Won-Gun;Bae, Byung-Yun;Kang, Tai-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.30-42
    • /
    • 2022
  • OSC is a type of supply chain and value chain that spans the entire process of construction production (planning, design, construction, maintenance, etc.). It is a method of producing the final object by manufacturing it in a factory, transporting it to the site, installing and construction. This research as is the construction cost was compared for each case A, which applied the PC method, and case B, which applied the RC method. In the case of applying the PC method (excluding the PC design cost), compared to the case where only the RC method was applied, the frame construction cost per unit quantity (m3) increased by about 70% (50% based on the total RC construction type). Of the total frame construction cost of PC method application, PC accounted for 90.2%, 'PC manufacturing cost' 54.8%, 'PC assembly cost' 28.5%, and 'transportation cost' accounted for 6.89%. Also a decision-making framework that can consider both costs and benefits was established. In the case of benefits, the construction period, defect repair, disaster occurrence, energy efficiency, noise/dust/waste, and greenhouse gas emission indicators reflecting OSC technical advantages were presented. It can contribute to providing a basis for helping decision-making on the introduction of PC apartment houses using OSC.

Preservation and Management Plan through the Analysis of Plant Resources and Functions of Algific Talus Slope as a Climate Change Shelter (기후변화 피난처로서 풍혈지의 식물자원 및 기능 분석을 통한 보전 및 관리방안)

  • Tae-Young Hwang;Jong-Won Lee;Ho-Geun Yun;Wan-Geun Park;Jong-Bin An
    • Korean Journal of Plant Resources
    • /
    • v.36 no.2
    • /
    • pp.133-171
    • /
    • 2023
  • This study was conducted to prepare basic data by analyzing the biological values and environmental factors of algific talus slope in order to respond to climate change due to the greenhouse effect, and to establish plans for forest biodiversity preserving and managing. Meteorological information was measured and the flora of vascular plants were investigated for six algific talus slope by seasonally from 2020 to 2021. As a result of the investigation, the temperature of all 6 algific talus slope was lower than that of the area where the algific talus slope was located in summer, and flora was 101 families, 350 genera, 621 species, 18 subspecies, 57 variants, 7 varieties, 703 taxa. In sum, it is judged that the algific talus slope has sufficient reasons and value to be preserved because it has excellent micrometeorological value from the cold wind blowing in summer and phytogeographical value in which various plants live in a small area. However, in spite of such an important area, the management of algific talus slope is insufficient, and the algific talus slope is damaged or the ecosystem of the algific talus slope is disturbed. Therefore, it is necessary to establish a systematic conservation and management plan by designating algific talus slope as a forest genetic resource reserve and OECM.

Decomposition Analysis on Energy Consumption of Manufacturing Industry (국내 제조업부문에 대한 에너지소비 요인 분해 분석)

  • Suyi Kim
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.825-848
    • /
    • 2022
  • This paper analyzed the factors for increasing energy consumption in the domestic manufacturing sector using the LMDI (Log mean division index) decomposition method for the period from 1999 to 2019. Among the LMDI decomposition analysis methods, both additive and multiplicative factor decomposition methods were used. in this analysis. According to the result of the analysis, the factor that increased energy consumption in the domestic manufacturing industry was the production effect, and the structure effect and intensity effect were found to be the factors that decreased energy consumption. In particular, the reduction of energy consumption due to the structure effect was greater than that of energy consumption effect due to the intensity effect. By period, it can be seen that energy consumption increased rapidly due to the production effect until 2011, but after that, the increase in energy consumption due to the production effect slowed down. On the other hand, after that, the energy reduction effect due to the structure effect and the intensity effect became prominent. In order to save energy in the manufacturing sector in the future, energy diagnosis and management through EMS (Energy management system) and FEMS (Factory energy management system) are more necessary. In addition, restructuring into a low-energy consumption industry seems more necessary.

A Study on the Analysis of Factors for Carbon Neutrality Construction of Container Terminal in Gwangyang Port (광양항 컨테이너터미널의 탄소중립 구축을 위한 요인분석 연구)

  • Eun, Yong-Ju;Choi, Yong-seok
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.3
    • /
    • pp.115-130
    • /
    • 2024
  • This study was conducted to identify the relative importance of the decision factors that should be given priority in order for Gwangyang Port Container Terminal to transform into an eco-friendly port based on carbon neutrality. To this end, three upper decision factors and 12 lower decision factors were derived, and a survey was conducted targeting shipping port experts and port users. The priorities were identified using the Fuzzy-Analytic Hierarchy Process(Fuzzy-AHP) technique. As a result, the importance of the three upper priority factors was evaluated in the order of low-carbon infrastructure construction, legal system improvement, and operational management efficiency. As a result of the composite weight analysis calculated by multiplying the importance of the upper factor by the lower factor, the comprehensive combined importance of the 12 lower-level factors was highest in ① conversion to eco-friendly power such as existing unloading equipment, followed by ② expansion of renewable energy in ports, ③ introduction of energy-saving equipment and facilities, ④ establishment of a circular hydrogen sharing network in the Gwangyang Bay area, ⑤ establishment and implementation of a low-carbon port mid- to long-term strategy, ⑥ provision of incentives to users to achieve carbon neutrality, ⑦ implementation of regulatory measures such as a carbon burden system, ⑧ establishment of an eco-friendly port management system, ⑨ introduction of a mandatory AMP use system, ⑩ expansion of the low-speed operation program, ⑪ expansion of operation of a carbon-neutral working-level organization and education, and ⑫ greenhouse gas monitoring in ports and nearby areas. This study provided the basic basis and foundation through an analysis of the priority of decision factors for Gwangyang Port Container Terminal to leap forward as a global carbon-neutral port, and presented objective criteria for introduction decision factors that should be referenced by the government, local governments, port authorities, and shipping and port-related organizations.

The Construction and Management of Artificial Wetland Using Emergent Macrophytes for High Biomass Production (대형정수식물을 활용한 높은 생산성의 인공습지 조성 및 관리)

  • Hong, Mun Gi;Heo, Young Jin;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.61-72
    • /
    • 2014
  • To present a guideline on the construction and management of artificial wetlands for high biomass production, three emergent macrophytes (Phragmites australis, PA; Typha angustifolia, TA; and Zizania latifolia, ZL) were planted under two substrates conditions (general soil with and without moss peat) and two water levels (5 cm and 20 cm) and monitored for three years. ZL showed greater growth performance rather than the others not only at early growth phase in the first year [shoot height, 200 cm; above-ground dry weight (AGDW), 500 $g/m^2$] but also in the last year (ZL, 1,100 $g/m^2$; TA, 770 $g/m^2$; and PA, 450 $g/m^2$ of AGDW). ZL with rapid growth at the early growth phase was not affected by naturally introduced weeds, whereas slower and poorer growth of PA and TA at the early growth phase resulted in relatively higher introduction and establishment of natural weeds. In turn, such introduced weeds negatively contributed to the growth of PA and TA particularly under shallow water (5 cm) with the substrate condition including moss peat. We suggest a plant material with rapid and great growth at the early phase such as ZL for reducing possible negative influences by the natural weeds and wild animals for high biomass production in constructed wetlands. A pre-growing process in greenhouse prior to planting might be an useful option to raise the competitiveness of those species when planting PA and/or TA. In addition, we recommend that integrated weed management system with utilizing various options at the most appropriate timing must be applied for maintaining sustainable high biomass production at the artificial wetlands.

A Sustainable Operation Plan for School Gardens - Based on a Survey of Elementary School Gardens in Seoul (학교 텃밭의 지속적인 운영방안에 관한 연구 - 서울특별시 초등학교의 학교 텃밭 실태조사를 바탕으로 -)

  • Choi, I-Jin;Lee, Jae Jung;Cho, Sang Tae;Jang, Yoon Ah;Heo, Joo Nyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.4
    • /
    • pp.36-48
    • /
    • 2018
  • This study surveyed 599 elementary schools in Seoul to provide measures for the quantitative expansion and sustainable operation of environmentally-friendly school garden. Of all schools, 161 schools had formed and were operating school gardens. The total area of school gardens was $166,901m^2$ and the mean area was $131.2m^2$ in elementary, junior high and high schools in Seoul. Meanwhile, the total area of school gardens was $65,493m^2$ and the mean area was $363m^2$ in 161 schools that participated in the survey, indicating $1.15m^2$ per student. Of these schools, 11.8% were operating gardens themselves, while 50.3% were operating gardens that had been newly renovated or environmentally improved by institutional support projects after initially managing gardens themselves. According to the locations of school gardens, mixed-type gardening (a combination of school gardening and container vegetable gardening) accounted for 34.8%, followed by school gardening at 32.9%, container vegetable gardening at 29.2%, and suburb community gardening at 3.1%. Those in charge of garden operations were teachers at 51.6%, comprising the largest percentage. Facilities built when forming the garden included storage facilities for small-scale greenhouses and farming equipment at 26.1%, accounting for the largest percentage. No additional facilities constructed accounted for 21.7%. The greatest difficulty in operating gardens was garden management at 34.2%. The most needed elements for the sustainable operation of gardens were improvement in physical environment and the need for hiring a paid garden, each accounting for 32%. The most important purpose for school gardening was creating educational environments (81.6%). The major source for gaining information on garden management was consultation from acquaintances (67.8%). Schools that utilize plant waste from gardens as natural fertilizers accounted for 45.8% of all schools. Responses to the impact of operating school gardens for educational purpose were positive in all schools as 'very effective' in 63.2% and 'effective' in 36.8%. This study was meaningful in that it intended to identify the current status of the operation of school gardens in elementary schools in Seoul, support the formation of school gardens appropriate for each school with sustainable operation measures, implement a high-quality education program, develop teaching materials, expand job training opportunities for teachers in charge, devise measures to support specialized instructors, and propose the need for a garden management organization.

Relationship between Radiation and Yield of Sweet Pepper Cultivars (광량과 파프리카 품종에 따른 수량과의 상호관계)

  • Myung, Dong Ju;Bae, Jong Hyang;Kang, Jong Goo;Lee, Jeong Hyun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.243-246
    • /
    • 2012
  • The study was aimed at the development of the simple linear regression model to estimate the fruit yield of sweet pepper and to support decision-making management for growing sweet pepper crop in Korea. For quantitative analysis of relationship between environmental data and periodical yield of sweet pepper the data obtained from the commercial Venlo-type glasshouse for 2 years. Obtained periodical yield data of five different cultivars and radiation data were accumulated and fitted by linear regression. A significant linear relationship was found between radiation integral and fruit yield, whereas the production per unit of radiation was different between cultivars. The slope of linear regression could indicate as light use efficiency for fruit production ($LUE_F$, $g{\cdot}MJ^{-1}$). $LUE_F$ of 'Ferrari' was $5.85g{\cdot}MJ^{-1}$, 'Fiesta' 5.32 for first year and $4.75g{\cdot}MJ^{-1}$ and for second year, 'President' was $4.66g{\cdot}MJ^{-1}$, 'Cupra' was $3.86g{\cdot}MJ^{-1}$, and 'Boogie' was $6.48g{\cdot}MJ^{-1}$. The amount of light requirement for the unit gram of fruit was between $25.88J{\cdot}g^{-1}$, for 'Cupra' and $15.42J{\cdot}g^{-1}$ for 'Boogie'. Although we found the linear relationship between radiation and fruit yield, $LUE_F$ was varied between cultivars and as well as year. The linear relationship could describe the fruit yield as function of radiation, but it needed more variable to generalization of the production, such as cultivar specifications, temperature, and number of fruits set per plant or unit of ground.

Identification of Streptomyces scopuliridis KR-001 and Its Herbicidal Characteristics (Streptomyces scopuliridis KR-001의 분리 동정 및 잡초 방제효과)

  • Lee, Boyoung;Kim, Jae Deok;Kim, Young Sook;Ko, Young Kwan;Yon, Gyu Hwan;Kim, Chang-Jin;Koo, Suk Jin;Choi, Jung Sup
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.38-46
    • /
    • 2013
  • With increasing environmental issues from synthetic chemical herbicides, microbe-originated herbicides could be a fascinating alternative in current agriculture. We isolated Streptomyces strains that produced herbicidal active metabolite(s) against a grass weed Digitaria sanguinalis. According to the result from 16S rDNA sequence comparison with the close strains, the best isolate (Code name MS-80673) was identified as Streptomyces scopuliridis KR-001. The closest type strain was Streptomyces scopuliridis RB72 which was previously reported as a bacteriocin producer. The optimal culture condition of S. scopuliridis KR-001 was $28^{\circ}C$, pH 7.0 and culture period 4 to7 days. Both of soil and foliar application of the crude culture broth concentrate was effective on several troublesome or noxious weed species such as a Sciyos angulatus in a greenhouse and field condition. Phytotoxic symptoms of the culture broth concentrate of S. scopuliridis KR-001 by foliar application were wilting and burndown of leaves, and stems followed by discoloration and finally plant death. In crops such as rice, wheat, barley, hot pepper and tomato, growth inhibition was observed. These results suggest that the new S. scopuliridis KR-001 strain producing herbicidal metabolites may be a new bio-herbicide candidate and/or may provide a new lead molecule for a more efficient herbicide.

Detection of Potential Flow Paths of Leaked CO2 from Underground Storage Using Electrical Resistivity Survey (전기비저항탐사 방법에 의한 지중 저장 이산화탄소 누출 가능 경로 탐지)

  • Lim, Woo-Ri;Hamm, Se-Yeong;Hwang, Hak-Soo;Kim, Sung-Wook;Jeon, Hang-Tak
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.69-79
    • /
    • 2018
  • The Korean government attempts to reduce $CO_2$ emissions by 37% to 314.7 Mt $CO_2$, down from the estimated 850.6 Mt $CO_2$ until 2030 in order to confront green house effect. In this context, in 2014, Korean government launched $CO_2$ Storage Environmental Management Research (K-COSEM) Center for carrying out pilot-scale research on $CO_2$ leakage from underground $CO_2$ storage facilities. For the detection of $CO_2$ leakage, it is necessary to identify hydrologeological and geophysical characteristics of the subject area. In the study site of Naesan-ri, Daeso-myeon, Eumseong-gun, Chungbuk Province, two times injection tests (June 28-July 24, 2017 and August 07-September 11, 2017) of $CO_2$ and $SF_6$ dissolved waters, respectively, was conducted to understand the leakage behavior of $CO_2$ from underground. The injection well was drilled to a depth of 24 m with a 21-m casing and screen interval of 21~24 m depth. Two times resistivity surveys on August 18, 2017 and September 1, 2017, were conducted for revealing the flow of the injected water as well as the electrical properties of the study site. The study results have shown that the high-resistivity zone and the low-resistivity zone are clearly contrasted with each other and the flow direction of the injected water is similar to natural groundwater flow. Besides, the low resistivity zone is widely formed from the depth of injection to the shallow topsoil, indicating that the weathered zone of high permeability has high $CO_2$ leakage potential.

Life Cylcle Assessment (LCA) on Rice Production Systems: Comparison of Greenhouse Gases (GHGs) Emission on Conventional, Without Agricultural Chemical and Organic Farming (쌀 생산체계에 대한 영농방법별 전과정평가: 관행농, 무농약, 유기농법별 탄소배출량 비교)

  • Ryu, Jong-Hee;Kwon, Young-Rip;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1157-1163
    • /
    • 2012
  • This study was performed a comparative life cycle assessment (LCA) among three rice production systems in order to analyze the difference of greenhouse gases (GHGs) emissions and environment impacts. Its life cycle inventory (LCI) database (DB) was established using data obtained from interview with conventional, without agricultural chemical and organic farming at Gunsan and Iksan, Jeonbuk province in 2011. According to the result of LCI analysis, $CO_2$ was mostly emitted from fertilizer production process and rice cropping phase. $CH_4$ and $N_2O$ were almost emitted from rice cultivation phase. The value of carbon footprint to produce 1 kg rice (unhulled) on conventional rice production system was 1.01E+00 kg $CO_2$-eq. $kg^{-1}$ and it was the highest value among three rice production systems. The value of carbon footprints on without agricultural chemical and organic rice production systems were 5.37E-01 $CO_2$-eq. $kg^{-1}$ and 6.58E-01 $CO_2$-eq. $kg^{-1}$, respectively. Without agricultural chemical rice production system whose input amount was the smallest had the lowest value of carbon footprint. Although the yield of rice from organic farming was the lowest, its value of carbon footprint less than that of conventional farming. Because there is no compound fertilizer inputs in organic farming. Compound fertilizer production and methane emission during rice cultivation were the main factor to GHGs emission in conventional and without agricultural chemical rice production systems. In organic rice production system, the main factors to GHGs emission were using fossil fuel on machine operation and methane emission from rice paddy field.