• Title/Summary/Keyword: 온실가스 배출 시나리오

Search Result 107, Processing Time 0.021 seconds

Hydro-meteorological Characteristics in Season and Solar Term According to RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 우리나라 계절 및 절기의 수문기상학적 특성 분석)

  • Oh, Miju;Kim, Jieun;Lee, Baesung;Kim, Tae-Woong
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.288-300
    • /
    • 2022
  • As industrialization and urbanization progress extensively, climate change is intensifying due to greenhouse gas emissions. In Korea, the average temperature increased, and the annual precipitation also increased due to climate change. In addition, the meaning of the solar term, which expresses seasons according to the movement of the sun, is also being overshadowed. Therefore, this study investigated the seasonal changes and solar-term changes of average temperature and precipitation observed in the past as well as simulated for future RCP climate change scenarios for five major regions (Capital Region, Gyeongsang, Chungcheong, Jeolla, and Gangwon). For the seasonal length, the length of summer became longer, the length of winter became shorter nationwide, and the precipitation in summer generally increased compared to the past. In the Chungcheong area, under the RCP 8.5 scenario, the length of summer increased by 46%, precipitation increased by 16.2%, and the length of winter decreased by 31.8% compared to the past. For the solar term, the temperature rose in all seasons. In the Chungcheong area, under the RCP 8.5 scenario, the temperature of major heat increased by 15.5%, and the temperature of major cold increased by 75.7% compared to the past. The overall results showed that the hydrological characteristics of the season and solar term were identified by region, which can be used as basic data to prepare policies to respond to climate change.

선택 실험법을 이용한 친환경 보일러의 시장 점유율 예측

  • Kim, Mi-Jeong;Bae, Jeong-Hwan
    • Environmental and Resource Economics Review
    • /
    • v.21 no.3
    • /
    • pp.595-625
    • /
    • 2012
  • Recently environment-friendly pellet boilers have interests as emissions of greenhouse gases are regulated internationally and energy security becomes more important to oil addicted countries including Republic of Korea. But the Korean market for pellet boilers is on the initial stage due to the high production costs relative to other conventional boilers. Hence the Korean government has supported financially and promoted the pellet boiler business. In this sense, it would contribute market stratergy and effective promotion policy for both of the government and private companies if we can forecast market shares of pellet boilers appropriately. For this purpose, this study surveyed potential consumers' preferences on pellet boilers among various alternatives using a choice experiment reflecting intangible costs. As the market share of new technology increases, intangible costs decline. According to different intangible cost scenarios, we experimented people's preferences on oil, gas, electric, and pellet boilers. A multinomial logit model was employed to estimate coefficient parameters of common attributes for various alternative boilers. Based on the estimates, we forecasted market shares of individual boilers. We found that as intangible costs decline, the market share of pellet boiler increase substantically while market shares of electric and gas boilers decrease dramatically. The market share of oil boiler did not change significantly. Meanwhile, as people are more rich, more educated, and exposed to advertisement on pellet boilers, the likelihood of choosing the pellet boiler increases.

  • PDF

Development of Spatial Statistical Downscaling Method for KMA-RCM by Using GIS (GIS를 활용한 KMA-RCM의 규모 상세화 기법 개발 및 검증)

  • Baek, Gyoung-Hye;Lee, Moun-Gjin;Kang, Byung-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.136-149
    • /
    • 2011
  • The aim of this study is to develop future climate scenario by downscaling the regional climate model (RCM) from global climate model (GCM) based on IPCC A1B scenario. To this end, the study first resampled the KMA-RCM(Korea meteorological administration-regional climate model) from spatial resolution of 27km to 1km. Second, observed climatic data of temperature and rainfall through 1971-2000 were processed to reflect the temperature lapse rate with respect to the altitude of each meteorological observation station. To optimize the downscaled results, Co-kriging was used to calculate temperature lapse-rate; and IDW was used to calculate rainfall lapse rate. Fourth, to verify results of the study we performed correlation analysis between future climate change projection data and observation data through the years 2001-2010. In this study the past climate data (1971-2000), future climate change scenarios(A1B), KMA-RCM(Korea meteorological administration-regional climate model) results and the 1km DEM were used. The research area is entire South Korea and the study period is from 1971 to 2100. Monthly mean temperatures and rainfall with spatial resolution of 1km * 1km were produced as a result of research. Annual average temperature and precipitation had increased by $1.39^{\circ}C$ and 271.23mm during 1971 to 2100. The development of downscaling method using GIS and verification with observed data could reduce the uncertainty of future climate change projection.

Analysis of Electric Vehicle's Environmental Benefits from the Perspective of Energy Transition in Korea (에너지 전환정책에 따른 전기자동차의 환경편익 추정연구)

  • Jeon, Hocheol
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.307-326
    • /
    • 2019
  • The electric vehicle is a representative measure to reduce greenhouse gas and local air pollutants in the transportation sector. Most countries provide purchase subsidies and tax reductions to promote electric vehicle sales. The electric vehicles have been considered as zero-emission vehicles(ZEV) in light of the fact that there has been no pollutant emission during driving. However, recent studies have pointed out that the pollutant emitted from the process of generating electricity used for charging the electric vehicles need to be treated as emissions of the electric vehicles. Furthermore, the environmental benefits of electric vehicle replacing the internal combustion vehicle vary with the power mix. In line with the recent studies, this study analyzes the impact of electric vehicles based on the current power mix and future energy transition scenarios in Korea. To estimate the precise air pollutants emission profile, this study uses hourly electricity generation and TMS emission data for each power plant from 2015 to 2016. The estimation results show that the electric vehicles under the current power mix generate the environmental benefits of only -0.41~10.83 won/km. Also, we find that the environmental benefit of electric vehicle will significantly increase only when the ratio of the coal-fired power plant is reduced to a considerable extent.

Economic Feasibility of REDD Project for Preventing Deforestation in North Korea (북한 산림전용 방지수단으로서의 REDD 사업의 경제적 타당성 분석)

  • Jo, Jang Hwan;KOO, Ja Choon;Youn, Yeo Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.630-638
    • /
    • 2011
  • This study aims to verify the economic validity of the REDD project in North Korea by estimating the potential carbon credits and the cost of REDD project. The REDD potential credits of North Korea are estimated based on the international statistics of forest area and population from 1990 to 2010, and the cost of REDD project is estimated indirectly by annual land opportunity cost of agriculture assuming that South Korea will aid the food production per area in North Korea. When the 25% reduction scenario was applied to the annual deforestation rate in North Korea, the potential REDD credits were estimated to be $4,232million{\sim}5,290milliontCO_2eq.$ for 20 years. It would account for 28~35% of South Korea's national medium-term greenhouse gas reduction target. On the other hand, the break-even price of REDD project was calculated as the profit of agriculture in the land available by forest conversion in North Korea. It was estimated to be 19.19$/$tCO_2eq.$ when the non-permanence risk of forest conserved through a REDD contract is assumed to be 20%. This price is higher than the price of REDD carbon credit 5$/$tCO_2eq.$ dealt in the 2010 voluntary carbon market, leading to no economic feasibility. However, REDD project provides co-benefits besides climate mitigation. As previous studies indicate, the break-even price is lower than 20$/$tCO_2eq.$, which is the social marginal cost of greenhouse gas emissions by loss of forest. Therefore REDD in North Korea can be justified against the social benefits. The economic feasibility of REDD project in North Korea can be largely influenced by the risk percentage. Thus, North Korean REDD project needs a strong guarantee and involvement by the government and people of North Korea to assure the project's economic feasibility.

GCMs-Driven Snow Depth and Hydrological Simulation for 2018 Pyeongchang Winter Olympics (기후모형(GCMs)에 기반한 2018년 평창 동계올림픽 적설량 및 수문모의)

  • Kim, Jung Jin;Ryu, Jae Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.229-243
    • /
    • 2013
  • Hydrological simulation Program-Fortran (HSPF) model was used to simulate streamflow and snow depth at Pyengchang watershed. The selected Global Climate Models (GCMs) provided by the Coupled Model Intercomparision Project Phase 3 (CMIP3) were utilized to evaluate streamflow and snow depth driven by future climate scenarios, including A1, A1B, and B1. Bias-correlation and temporal downscaling processes have been performed to minimize systematic errors between GCMs and HSPF. Based on simulated monthly streamflow and snow depth after calibration, the results indicate that HSPF performs well. The correlation coefficient between the observed and simulated monthly streamflow is 0.94. Snow depth simulations also show high correlation coefficient, which is 0.91. The results indicate that snow depth in 2018 at Pyongchang winter olympic venues will decrease by 17.62%, 9.38%, and 7.25% in January, February, and March respectively, based on streamflow realizations induced by all GCMs ensembles.

An Analysis of Long-Term Scenarios for The GHG Emissions Projections Considering Economic Growth and Industrial Structure Change (경제성장과 산업구조 변화에 따른 장기 온실가스 배출량 전망 시나리오 분석)

  • Kwon, Seung Moon;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.257-268
    • /
    • 2016
  • Both economic growth and industrial structure have great influence on energy consumption and GHG emissions. This study analyzed long-term scenarios for GHG emissions projections considering economic growth and industry value added change. In consideration of 3 GDP and 3 industry value added outlook, total 9 scenarios were set; 'Assembly Industry Baseline(AI)', 'Assembly KEIT industry(AK)', 'Assembly Advanced Country industry(AA)', 'KDI Industry Baseline(KI)', 'KDI KEIT industry(KK)', 'KDI Advanced Country industry(KA)', 'OECD Industry Baseline(OI)', 'OECD KEIT industry(OK)', and 'OECD Advanced Country industry(OA)' scenarios. In consideration of the GDP increase rate and industry value added outlook, it is estimated that AI scenario's GHG emissions would be 777 million tons of $CO_2eq$ in 2030. On the other hand, in the case of OA scenario, GHG emissions would be 560.2 million tons of $CO_2eq$ in 2030. Differences between AI scenario's and OA scenario's were 216.8 million tons of $CO_2eq$. It can be identified by that GDP and industry value added change have great influence on GHG emissions. In view of the fact that Korea's amount of GHG emission reduction targets in 2030 were 218.6 million tons of $CO_2eq$ that the result of this research could give us valuable insight.

Projection of Future Snowfall by Using Climate Change Scenarios (기후변화 시나리오를 이용한 미래의 강설량 예측)

  • Joh, Hyung-Kyung;Kim, Saet-Byul;Cheong, Hyuk;Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.188-202
    • /
    • 2011
  • Due to emissions of greenhouse gases caused by increased use of fossil fuels, the climate change has been detected and this phenomenon would affect even larger changes in temperature and precipitation of South Korea. Especially, the increase of temperature by climate change can affect the amount and pattern of snowfall. Accordingly, we tried to predict future snowfall and the snowfall pattern changes by using the downscaled GCM (general circulation model) scenarios. Causes of snow varies greatly, but the information provided by GCM are maximum / minimum temperature, rainfall, solar radiation. In this study, the possibility of snow was focused on correlation between minimum temperatures and future precipitation. First, we collected the newest fresh snow depth offered by KMA (Korea meteorological administration), then we estimate the temperature of snow falling conditions. These estimated temperature conditions were distributed spatially and regionally by IDW (Inverse Distance Weight) interpolation. Finally, the distributed temperature conditions (or boundaries) were applied to GCM, and the future snowfall was predicted. The results showed a wide range of variation for each scenario. Our models predict that snowfall will decrease in the study region. This may be caused by global warming. Temperature rise caused by global warming highlights the effectiveness of these mechanisms that concerned with the temporal and spatial changes in snow, and would affect the spring water resources.

Climate Change Impacts and Adaptation on Hydrological Safety Perspectives of Existing Dams (기후변화에 따른 댐의 수문학적 안전성 평가 및 적응방안 고찰)

  • Park, Jiyeon;Jung, Il Won;Kwon, Ji Hye;Kim, Wonsul
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.149-156
    • /
    • 2019
  • Assessing the hydrological safety of existing dams against climate change and providing appropriate adaptation measures are important in terms of sustainable water supply and management. Korean major dams ensure their safety through periodic inspections and maintenance according to 'Special Act on the safety control and maintenance of establishments'. Especially when performing a full safety examination, principal engineer must assess the hydrological safety and prepare for potential risks. This study employed future probable maximum precipitation (PMP) estimated using outputs of regional climate models based on RCP4.5 and RCP8.5 greenhouse-gas emission scenarios to assess climate change impact on existing dam's future hydrological safety. The analysis period was selected from 2011 to 2040, from 2041 to 2070, and from 2071 to 2100. Evaluating the potential risk based on the future probable maximum flood (PMF) for four major dams (A, B, C, I) showed that climate change could induce increasing the overflow risk on three dams (A, B, I), although there are small differences depending on the RCP scenarios and the analysis periods. Our results suggested that dam managers should consider both non-structural measures and structural measures to adapt to the expected climate change.

Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models (GCM과 수문모형의 불확실성을 고려한 기후변화에 따른 한반도 미래 수자원 전망)

  • Bae, Deg-Hyo;Jung, Il-Won;Lee, Byung-Ju;Lee, Moon-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.389-406
    • /
    • 2011
  • The objective of this study is to examine the climate change impact assessment on Korean water resources considering the uncertainties of Global Climate Models (GCMs) and hydrological models. The 3 different emission scenarios (A2, A1B, B1) and 13 GCMs' results are used to consider the uncertainties of the emission scenario and GCM, while PRMS, SWAT, and SLURP models are employed to consider the effects of hydrological model structures and potential evapotranspiration (PET) computation methods. The 312 ensemble results are provided to 109 mid-size sub-basins over South Korean and Gaussian kernel density functions obtained from their ensemble results are suggested with the ensemble mean and their variabilities of the results. It shows that the summer and winter runoffs are expected to be increased and spring runoff to be decreased for the future 3 periods relative to past 30-year reference period. It also provides that annual average runoff increased over all sub-basins, but the increases in the northern basins including Han River basin are greater than those in the southern basins. Due to the reason that the increase in annual average runoff is mainly caused by the increase in summer runoff and consequently the seasonal runoff variations according to climate change would be severe, the climate change impact on Korean water resources could intensify the difficulties to water resources conservation and management. On the other hand, as regards to the uncertainties, the highest and lowest ones are in winter and summer seasons, respectively.