In the online marketplace, consumers are exposed to various products and freely express opinions. As consumer product reviews have a important effect on the success of online markets and other consumers, online market needs to accurately analyze the consumers' emotions about their products. Text mining, which is one of the data analysis techniques, can analyze the consumer's reviews on the products and efficiently manage the products. Previous studies have analyzed specific domains and less than 20,000 data, despite the different accuracy of the analysis results depending on the data domain and size. Further, there are few studies on additional factors that can improve the accuracy of analysis. This study analyzed 72,530 review data of food product domain that was not mainly covered in previous studies by using ensemble technique. We also examined the influence of summary review on improving accuracy of analysis. As a result of the study, this study found that Boosting ensemble technique has the highest accuracy of analysis. In addition, the summary review contributed to improving accuracy of the analysis.
Following the recent advancement in the use of social networks, a vast amount of different online reviews is created. These variable online reviews which provide feedback data of contents' are being used as sources of valuable information to both contents' users and providers. With the increasing importance of online reviews, studies on opinion mining which analyzes online reviews to extract opinions or evaluations, attitudes and emotions of the writer have been on the increase. However, previous sentiment analysis techniques of opinion-mining focus only on the classification of reviews into positive or negative classes but does not include detailed information analysis of the user's satisfaction or sentiment grounds. Also, previous designs of the sentiment analysis technique only applied to one content domain that is, either product or movie, and could not be applied to other contents from a different domain. This paper suggests a sentiment analysis technique that can analyze detailed satisfaction of online reviews and extract detailed information of the satisfaction level. The proposed technique can analyze not only one domain of contents but also a variety of contents that are not from the same domain. In addition, we design a system based on Hadoop to process vast amounts of data quickly and efficiently. Through our proposed system, both users and contents' providers will be able to receive feedback information more clearly and in detail. Consequently, potential users who will use the content can make effective decisions and contents' providers can quickly apply the users' responses when developing marketing strategy as opposed to the old methods of using surveys. Moreover, the system is expected to be used practically in various fields that require user comments.
This study classifies review attributes into ratings, number of comments and image information in online shopping mall to verify their impact on brand attitude and purchase decision and e-WOM intention. Use SPSS 23.0 for frequency analysis, factor analysis and regression analysis. The results showed that review attributes have a positive effect on brand attitudes, purchase decision and e-WOM intention, but the number of comments has not affect on purchase decision. Brand attitude has a positive effect on purchase decision and e-WOM intention. Brand attitude has media effect in the relationship between ratings, image information and purchase decision, and in the relationship between review attributes and e-WOM intention. As these results, consumers don't always like to have a lot of comments. and should allow to focus on high ratings and photo reviews as much as possible when writing reviews.
As the influence of online reviews on consumer decision-making increases, concerns about review manipulation are also increasing. Fake reviews or review manipulations are emerging as an important problem by posting untrue reviews in order to increase sales volume, causing the consumer's reverse choice, and acting at a high cost to the society as a whole. Most of the related prior studies have focused on predicting review manipulation through data mining methods, and research from a consumer perspective is insufficient. However, since the possibility of manipulation of reviews perceived by consumers can affect the usefulness of reviews, it can provide important implications for online word-of-mouth management regardless of whether it is false or not. Therefore, in this study, we analyzed whether there is a difference between the review evaluated by the consumer as being manipulated and the general review, and verified whether the manipulated review negatively affects the review usefulness. For empirical analysis, 34,711 online book reviews on the LibraryThing website were analyzed using multilevel logistic regression analysis and Poisson regression analysis. As a result of the analysis, it was found that there were differences in product level, reviewer level, and review level factors between reviews that consumers perceived as being manipulated and reviews that were not. In addition, manipulated reviews have been shown to negatively affect review usefulness.
Sentiment represents one's own state through the process of change to stimulus, and emotion represents a simple psychological state felt for a certain phenomenon. These two terms tend to be used interchangeably, but their meaning and usage are different. In this study, we try to find out how it affects the helpfulness of reviews by classifying sentiment and emotion through online reviews written by online consumers after purchasing and using various products and services. Recently, online reviews have become a very important factor for businesses and consumers. Helpful reviews play a key role in the decision-making process of potential customers and can be assessed through review helpfulness. The helpfulness of reviews is becoming increasingly important in practice as it is utilized in marketing strategies in business as well as in purchasing decision-making issues of consumers. And academically, the importance of research to find the factors influencing the helpfulness of reviews is growing. In this study, Yelp.com secured reviews on restaurants and conducted a study on how the sentiment and emotion of online reviews affect the helpfulness of reviews. Based on the prior research, a research model including sentiment and emotions for online reviews was built, and text mining analyzes how the sentiment and emotion of online reviews affect the helpfulness of online reviews, and the difference in the effects on emotions It was verified. The results showed that negative sentiment and emotion had a greater effect on review helpfulness, which was consistent with the negative bias theory.
With the development of the Internet environment, various types of online reviews are being generated and exchanged among consumers to share their opinions. In line with this trend, companies are making efforts to analyze online reviews and use the results in various business activities such as marketing, sales, and product development. However, research on online review in industry related to 'Video Game' which is representative experience goods has not been performed enough. Therefore, this study analyzed STEAM community review data using machine learning techniques. We analyzed the factors affecting the opinion of other users' game review. We also propose managerial implications to incease user loyalty and usability.
Fraudulent companies or sellers strategically manipulate reviews to influence customers' purchase decisions; therefore, the reliability of reviews has become crucial for customer decision-making. Since customers increasingly rely on online reviews to search for more detailed information about products or services before purchasing, many researchers focus on detecting manipulated reviews. However, the main problem in detecting manipulated reviews is the difficulties with obtaining data with manipulated reviews to utilize machine learning techniques with sufficient data. Also, the number of manipulated reviews is insufficient compared with the number of non-manipulated reviews, so the class imbalance problem occurs. The class with fewer examples is under-represented and can hamper a model's accuracy, so machine learning methods suffer from the class imbalance problem and solving the class imbalance problem is important to build an accurate model for detecting manipulated reviews. Thus, we propose an OpenAI-based reviews generation model to solve the manipulated reviews imbalance problem, thereby enhancing the accuracy of manipulated reviews detection. In this research, we applied the novel autoregressive language model - GPT-3 to generate reviews based on manipulated reviews. Moreover, we found that applying GPT-3 model for oversampling manipulated reviews can recover a satisfactory portion of performance losses and shows better performance in classification (logit, decision tree, neural networks) than traditional oversampling models such as random oversampling and SMOTE.
The development of the Internet of Things led to new services that did not exist before. This required a change to the existing network. This study aims to verify the service quality, satisfaction, repurchase intention relationship, and the moderating effect of online reviews of Chinese consumers using fashion shopping malls. The results of the study showed that from the perspective of consumers in their 20s and 30s in China, the type, reliability, convenience, and interaction of service quality had a positive effect on customer satisfaction and repurchase intention. In addition, negative reviews among online reviews had a great influence on repurchase intention. Based on the results of the study, it will help improve the effect on online product reviews and in-depth understanding of the acceptance of online product reviews for online fashion shopping malls, and establish strategies for fashion companies to effectively manage online product reviews information.
Journal of the Korea Society of Computer and Information
/
v.29
no.7
/
pp.139-148
/
2024
In the post-pandemic era, the demand for online education platforms has surged, leading to increased consumer reliance on online reviews for decision-making. This study investigates the impact of Chinese online customer reviews on consumer purchase behavior in online education. By examining the role of trust, review sentiment, and the quantity and timeliness of reviews, the research aims to understand how these factors influence consumer decisions. By using regression model, findings reveal that negative reviews, timely feedback, and a higher volume of reviews positively affect consumer purchase decisions, while course pricing demonstrates an inverse relationship. Furthermore, cognitive and affective trust mediate the relationship between reviews and purchase behavior, highlighting a reverse U-shaped effect on consumer decision inclination. These insights provide valuable implications for online education providers, emphasizing the need to manage and leverage online reviews to foster consumer trust and improve sales performance.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.596-598
/
2018
본 논문은 온라인 교육매칭 플랫폼의 교육자에 대한 신뢰도 파악을 위한 리뷰분석 자동화 시스템을 설계한 논문이다. 웹 크롤링을 통해 비정형 데이터인 교육자에 대한 리뷰를 수집 및 파싱을 통해 데이터 베이스화 한다. 수집한 리뷰 데이터와 SO-PMI를 이용해 온라인 교육자 신뢰도 파악을 위한 맞춤형 감성사전을 구축하고자 한다. 구축한 감성사전을 이용해 리뷰를 수치화해 교육자와 피교육자 매칭 시신뢰성 향상에 도움을 주고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.