본 논문에서는 텍스트마이닝 기술을 이용하여 온라인 고객리뷰를 분석하기 위한 방법론을 제안하였다. 온라인 고객리뷰를 보다 효율적이고 효과적으로 분석할 수 있도록 시장세분화의 개념을 도입하였다. 즉, 제안한 방법론은 텍스트마이닝 분야에서 시장세분화의 개념에 부응하는 기술들이라 할 수 있는 범주화와 정보추출 기법의 사용을 포함한다. 특히, 통계적으로 보다 견고한 분석결과를 도출할 수 있도록 전통적 통계분석기법중의 하나인 교차분석방법을 제안하는 방법론에 포함하였다. 제안한 방법론의 타당성을 확인하기 위하여 양질의 온라인 고객리뷰가 있는 웹사이트를 선정하여 실제로 온라인 고객리뷰들을 분석하여 보았다.
온라인 리뷰는 네트워크 기술의 발전을 통해 그 영향력이 확대되고 있다. 특히, 사전 정보로 통해 소비가 결정되는 영화는 온라인 리뷰가 소비자들의 영화 결정에도 중요한 영향을 미치고 있다. 이에 본 연구는 영화관련 온라인 리뷰를 영화 소비 후 소비자들의 평가 정보라 가정하고, 이를 활용한 영화 흥행성과 예측모형을 제시하고자 한다. 선행 연구를 통하여 영화관련 온라인 리뷰에 감독, 배우, 스토리, 효과 등의 독립적인 속성 및 종합적인 평가가 있음을 확인하였으며, 본 연구에서는 각 속성을 2개 이상 평가하고 있는 복합형 리뷰 10가지를 추가하여 총 15가지로 온라인 리뷰 분류하였다. 2010년부터 2013년까지 개봉한 한국영화 중 상업영화 209개의 개봉 첫 주 온라인 리뷰를 온라인 리뷰 마이닝을 진행하고, 최종적으로 리뷰 마이닝 결과를 판별분석을 통한 영화 흥행성적 예측모형을 제시한다. 판별분석을 실시한 결과, 온라인 리뷰로부터 도출된 감독, 배우, 효과 및 스토리 관련 평가와 개봉 첫 주 전체 온라인 리뷰 수가 유의미하게 변별하였다.
소셜 네트워크 서비스(SNS)의 활성화로 웹상에는 방대한 양의 온라인 리뷰들이 생산되고 있으며, 이러한 온라인 리뷰들은 다양한 콘텐츠들에 대한 의견 데이터로써 콘텐츠 이용자와 제공자들에게 가치 있는 정보로 활용되고 있다. 한편, 온라인 리뷰에 대한 중요도가 높아짐에 따라 온라인 리뷰를 분석하여 글쓴이의 의견이나 평가, 태도, 감정 등을 추출해 내는 오피니언마이닝에 대한 연구가 활발하게 진행되고 있다. 그러나 기존의 오피니언마이닝 연구들에서는 리뷰의 의견 분류에만 초점을 맞추어 감성 분석 기법을 설계하였기 때문에 리뷰 속에 내포되어있는 작성자의 자세한 만족도까지는 알 수 없었으며, 감성 분석 기법이 특정 콘텐츠에 한정되어있어 도메인이 같지 않은 다른 콘텐츠들에는 적용될 수 없다는 문제점이 있었다. 이에 본 연구에서는 기존 의견 분류 방법에 강도를 주어 좀 더 세밀한 감성 분석을 수행하고, 이 결과를 통계적 척도에 적용하여 리뷰에 내포되어 있는 작성자의 자세한 만족도를 도출 할 수 있는 감성 분석 기법을 제안한다, 그리고 제안한 기법을 바탕으로 도메인에 상관없이 다양한 콘텐츠에 적용되어 콘텐츠의 만족도를 분석 할 수 있는 시스템을 설계하였다. 또한 방대한 양의 리뷰 데이터들을 빠르고 효율적으로 처리하기 위해 빅 데이터 처리도구인 하둡을 기반으로 시스템을 구축하였다. 본 시스템을 통해 콘텐츠 이용자는 보다 효율적인 의사결정을, 제공자들은 빠른 반응분석을 할 수 있어 본 시스템은 사용자의 의견을 필요로 하는 다양한 분야에 매우 실용적으로 활용 될 것으로 기대한다.
영화 수익에 있어 영화의 흥행 여부는 중요한 영향을 끼친다. 영화 흥행 요인은 영화 산업의 규모가 커지면서 많은 제작사들 및 투자자들이 고려해야 하는 사항이 되었다. 따라서 영화의 흥행을 예측하기 위한 많은 모델이 연구되었다. 본 연구의 목적은 선행연구에서 흥행에 유의미한 영향을 끼친다고 밝혀진 스크린 수, 감독명, 제작사명 등의 내재적인 속성과 더불어 온라인 구전 변수를 사용하여 영화 흥행 예측 모델을 만드는 것이다. 이때 기사 수, 블로그 수와 같이 온라인 구전의 크기를 나타내는 변수들을 사용하는 대신 개봉 후 첫 주간의 관람객 리뷰를 텍스트마이닝을 이용하여 전체 리뷰 중 긍정 리뷰의 비율에 따라 점수를 매긴 후 독립변수로 사용한다. 그 후, 데이터 마이닝 기법을 활용하여 만든 모델에 앞서 언급한 독립변수를 입력 값으로 사용하여 영화의 흥행을 예측한다. 최종적으로 의사결정트리와 로지스틱회귀를 수행한 결과 영화 흥행에 영향을 주는 독립변수를 찾고 모델의 성능을 평가하였다. 로지스틱회귀의 결과 관객 수, 평점이 영화의 흥행에 특히 유의한 영향을 끼치는 변수로 선정되었고 리뷰 역시 유의한 변수로 선정되었다. 이때 만들어진 모델은 약 90%의 높은 수준의 정확도를 보여주었다. 의사결정트리의 결과 관객 수가 가장 중요한 변수로 선정되었다.
오늘날 정보화 시대에서는 온라인 쇼핑의 상품리뷰 등 대용량의 텍스트 문서가 존재하며 제품에 대한 정서적인 의견뿐만 아니라 제품 선호도 및 상품 비교와 같은 유용한 정보를 제공한다. 본 논문에서는 사용자가 작성한 상품 리뷰로부터 제품의 특성을 비교하는 비교의견을 추출하기 위해 적용한 다양한 텍스트 마이닝 기법의 비교 결과를 제시한다.
이 연구는 텍스트 마이닝을 사용하여 하드웨어 제품에 대한 리뷰, 서비스 상품에 대한 리뷰, ICT분야의 하드웨어와 클라우드 서비스가 융합된 형태의 상품을 대상으로 소비자 리뷰를 분석한다. 분석을 위해 각 리뷰의 키워드를 도출하고 토픽 도출에 사용된 단어의 차별성을 찾는다. 마지막으로 전체 리뷰를 대상으로 군집분석을 실시하고 각각의 상품군의 리뷰가 어떤 군집에 속하는지를 검토한다. 이 연구를 통해서 각 상품의 유형별로 특화되어 사용된 핵심어를 도출하였고, 토픽모델링을 사용하여 제품과 서비스의 특성을 표현하는 주제를 도출하였다. 서비스 상품 리뷰에서는 공급자의 우수성을 의미하는 professional, technician과 같은 핵심어를 도출하였고, 융합제품서비스상품으로서 아마존 에코 리뷰에서는 favorite, fine, fun, nice, smart, unlimited, useful 등의 긍정적 의미의 형용사를 도출하였다. 군집분석을 사용하여 전체 리뷰를 분석하였고, 3개의 상품 유형별 리뷰가 배타적으로 서로 다른 각각의 군집에 속하는 결과를 발견하였다. 이 연구는 소비자의 니즈(needs)를 상품의 유형별로 온라인 리뷰를 이용하여 차이점을 분석하였고 실무적으로 상품 유형에 기반한 상품기획과 마케팅 프로모션 차별화의 필요성을 제시하였다.
온라인 마켓에서 소비자는 다양한 상품을 접하고 이에 대한 의견을 자유롭게 기술한다. 소비자의 상품 리뷰가 다른 소비자와 온라인 마켓의 성공에 큰 영향을 주는 만큼 온라인 마켓은 판매 상품에 대한 소비자의 감성을 정확하게 분석할 필요가 있다. 데이터 분석 기법 중 하나인 텍스트 마이닝은 상품에 대한 소비자 리뷰를 분석하여 상품을 효율적으로 관리할 수 있게 해준다. 선행 연구들은 데이터 도메인과 사이즈에 따라 분석 결과의 정확도가 다르게 나타남에도 불구하고 특정 도메인과 2만개 미만의 데이터를 분석해왔다. 또한, 분석의 정확도를 향상 시킬 수 있는 추가 요인에 대한 연구는 거의 수행하지 않았다. 본 연구는 앙상블 기법을 활용하여 기존 연구에서 주로 다루지 않은 음식 상품 도메인의 72,530개 리뷰 데이터를 분석하였다. 또한, 분석 정확도 향상과 관련하여 요약 리뷰의 영향력을 살펴보았다. 연구 결과, 본 연구는 기존 연구와 다르게 부스팅 앙상블 기법이 가장 높은 분석 정확도를 보인다는 사실을 발견하였다. 또한, 요약 리뷰는 분석의 정확도 향상에 기여하는 것으로 나타났다.
코로나 19의 영향으로 배달앱 시장이 빠르게 성장하며, 리뷰와 평점이 더욱 중요해지고 있다. 그러나 급격하게 늘어난 리뷰와 평점의 신뢰도에 의문이 제기되고 있다. 따라서 본 연구는 리뷰와 평점을 탐색적으로 분석하여 배달앱 리뷰의 신뢰도와 유용성을 파악하고, 이를 높일 방법을 탐구하였다. 텍스트 마이닝 기법을 사용하여 도출한 결과는 다음과 같다. 첫째, 요기요와 네이버 지도, 구글 지도의 음식점 평점을 분석한 결과, 요기요는 가장 우편향된 평점 분포를 보여주었다. 둘째, 요기요의 세부 평점 요인(맛, 양, 배달)간에는 모두 강한 양의 상관관계가 있었고, 이는 부정 리뷰의 단어 분석에서도 드러났다. 셋째, 리뷰의 극성에 따라 사용되는 품사와 형태소의 비율이 달랐다. 넷째, 전체 리뷰 데이터에서 367개의 부정어를 선별한 후, 이를 분류하여 치킨 전용 부정어 사전을 제작하였다. 본 연구는 치킨 리뷰의 탐색적 분석을 통해 앞으로 배달앱 리뷰에 대한 연구가 나아가야 할 방향을 제시하였다.
오피니언마이닝 기법은 대량의 고개리뷰들에 나타나는 핵심개체 또는 속성들에 대하여 고객들이 느끼는 긍정 또는 부정의 정도를 계산할 수 있지만, 그 분석능력이 단순하다는 한계가 있다. 본 논문에서는 온라인 고객리뷰들에 대하여 다차원적으로 분석할 수 있는 기법을 제안하였다. 기존의 OLAP기법을 텍스트 데이터형에 적용할 수 있도록 수정하였다. 다차원 분석모델은 명사축과 형용사축, 문서축으로 구성되는 3차원 공간 개념을 4개의 관계형 테이블로 실체화 한 것이다. 다차원 분석모델은 기존의 오피니언마이닝, 정보요약, 클러스터링 알고리즘들을 융합할 수 있는 새로운 틀이라는 점에서 그 가치가 있다. 본 논문에서 제안한 다차원 분석모델과 알고리즘들을 실제로 구현하여 온라인 고객리뷰에 대한 복잡한 분석을 수행할 수 있음을 확인하였다.
본 논문에서는 속성기반 오피니언 마이닝(ABOM)을 적용한 협업 필터링의 정확도 성능을 개선할 수 있는 알고리즘을 제안한다. 실험을 위해 국내 스마트폰 사용자의 스마트폰 앱에 대한 총 1,227건의 온라인 소비자 리뷰 데이터가 분석에 사용되었다. KKMA(꼬꼬마)분석기를 이용하여 형태소 분석 및 KOSAC를 사용하여 감성어 분석 후 LDA 토픽 모델링을 사용하여 속성 추출한 가중치 값을 부여한 리뷰별로 토픽 모델링 결과를 이용하여 협업필터링의 평점과 감성스코어의 평점을 합산한 평균값 정확도 오차를 계산한 통계모형 성능 평가인 MAE, MAPE, RMSE를 사용하였다. 실험을 통해 추천 알고리즘 중 전통적인 협업필터링과 LDA 속성 추출과 감성분석을 결합한 속성기반 오피니언 마이닝(Aspect-Based Opinion Mining, ABOM) 기법을 결합하여 온라인 고객의 앱 평점(APP_Score) 대한 정확도를 예측하였다. 분석 결과 전통적인 협업필터링을 구현한 평점의 정확도 보다 속성기반 오피니언 마이닝 CF를 적용한 평점의 예측 정확도가 더 우수한 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.