불확실한 비선형 다중입출력 시스템에 대해서 신경회로망을 이용한 적응출력피드백제어기법이 제안되었다. 역변환 기반의 제어입력으로부터 불확실한 비선형성을 분리하기 위해 변형된 운동 역변환 모델(Modified Dynamic Inversion Model, MDIM)이 도입되었다. MDIM은 근사된 운동 역변환 모델과 역변환 모델 오차로 구성되었고 한 개의 신경회로망이 MDIM을 보상하는데 적용되었다. 여기서 신경회로망의 출력은 필터링된 근사오차 기반의 제어기를 증대시킨다. 추적성능과 종국적 유계성(ultimate boundedness)을 보장하기 위해 리야프노프의 직접방법(Lyapunov's direct method)으로부터 유도된 온라인 가중치 적응법칙이 이용되었다. 수치적 시뮬레이션을 통해 본 논문의 타당성을 검증하였다.
디지털 도파관 모델은 악기의 물리적 모델링에 사용되는 일반적인 방법이다. 디지털 도파관 모델에서 파동의 움직임은 시간 또는 공간을 기준으로 해석 가능하다. 음의 샘플링이 시간을 기준으로 이루어지므로 악기 모델은 시간에 의한 파동의 움직임으로 묘사되는 것이 일반적이다. 본 논문에서는 현에 대한 공간 기준의 디지털 도파관 모델에 악기 몸체 모델을 추가해 악기 음을 합성하였다. 그렇게 함으로써 합성 음의 음질을 향상시키고 악기 모델의 음색 조절 변수들을 효과적으로 처리할 수 있었다. 공간 기준 샘플링에서 현 및 몸체에서 발생하는 미소 지연 오차에 대해 설명하고 FD (Fractional Delay) 필터를 이용해 미소 지연을 처리하는 방법을 보였다. 그리고 지연에 수에 따른 합성음의 변화를 설명하고 그 결과를 시간 기준 디지털 도파관 모델과 비교하였다.
SLR (Satellite Laser Ranging) 데이터의 높은 거리측정 정밀도는 위성 추적 시스템의 검증 및 보정, 위성의 정밀궤도결정, 지구와 관련된 물리 상수 및 모델 검증, 우주파편과 같은 우주물체의 추적 및 감시 등에 활용이 가능하다. 특히 위성의 정밀궤도결정에 SLR 데이터를 활용하는 것은 고정밀 지구관측 위성 및 독자적인 항법 시스템 운영에 필수적인 부분이다. SLR 시스템은 위성 관측 가능 시간 및 지역이 한정되어 있기 때문에 정밀궤도 결정에 활용하는 것이 쉽지 않다. 따라서 이 연구에서는 SLR 데이터를 사용하기 위한 효율적인 정밀궤도결정 전략에 대해서 알아보았다. 동역학 및 관측 모델, 지상국의 개수, 초기 궤도 오차, 필터링 방법, 고도각에 따른 관측 데이터 선택 등의 기준을 선정하고 각각의 경우에 대해 정밀궤도결정을 수행하고 결과를 분석하였다. 정밀궤도결정 테스트를 위해서는 YLPODS (Yonsei Laser-ranging Precision Orbit Determination System)과 SLR정규점 (Normal Point) 데이터를 사용하였다. 이를 통해서 SLR 데이터를 사용하기 위한 효율적인 정밀궤도결정 전략에 대해 고찰해보았다.
This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.
협업 필터링 추천은 사용자의 아이템에 대한 선호도를 기반으로 유사 아이템 집합 또는 유사 사용자 집합을 생성하고 이를 이용해 사용자의 특정 아이템에 대한 선호도를 예측한다. 따라서 선호도 행렬이 희박할 경우, 추천의 신뢰도는 급격히 낮아진다. 본 논문에서는 위 문제를 해결하기 위해 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법을 제안한다. 선호도 예측은 유사 아이템 집합과 유사 사용자 집합을 모두 생성하고 각 집합을 통해 사용자의 선호도를 예측하며, 모델의 상황을 반영한 가중치를 이용해 각 예측치를 병합하여 수행된다. 이 기법은 사용자 선호도 예측 정확도를 높이며 선호도 행렬 희박도가 높은 상황에도 추천 서비스의 신뢰도를 유지할 수 있도록 한다. 이 기법을 바탕으로 추천 시스템을 구현하고 절대평균오차를 기준으로 서비스 신뢰도 향상을 측정하였다. 실험에서 본 기법은 Hao Ji가 제안한 기존의 기법에 비해 선호도 행렬 희박도가 84% 이상인 상황에서 평균 21.7%의 성능 향상을 보여 효과적으로 행렬 희박도 문제를 해소할 수 있음을 검증하였다.
본 논문은 한국형 위성항법시스템의 위성궤도, 위성시계 고장 검출이 가능한 UDRE에 대한 모니터링 알고리즘 분석을 수행하였다. UDRE 모니터링을 위한 의사거리 잔차 생성방법 중 대류권 지연오차와 수신기 시계바이어스 추정방법에 대해 새로운 알고리즘을 제안한다. 대류권 지연오차는 국내 기상데이터에 더욱 적합한 Saastamoinen 모델과 Neill 매핑함수의 조합 모델을 사용하였으며, 수신기 시계 바이어스 추정방법으로는 칼만필터를 사용한 기법을 사용하였다. 국내 지역에서 직접 수신한 위성데이터와 기상데이터를 사용한 UDRE 모니터링 분석을 통해 한국지역에 더욱 적합한 UDRE 모니터링 한계치(Threshold)를 도출하고 추 후 한국형 위성항법시스템의 고장검출 기법으로 활용할 수 있을 것으로 기대한다.
본 논문에서는 관측왜곡을 포함하고 있는 적응형 순항제어 시스템개발에 필수적인 필터링 방식에 대한 연구를 진행한다. 앞선 차량의 정확한 추적과 의도파악을 위하여 기본적으로 IMM (Interacting multiple model)을 사용하며 관측의 왜곡을 보상하기 위하여 확률적 퍼지 모델을 세안한다. 확률적 퍼지 모델은 기존의 결정형 퍼지모델과 달리 모델링 오차를 확률로 모델링한다. 끝으로 확률퍼지모델과 IMM을 결합한 FIMM (Fuzzy IMM)을 제안하여 관측왜곡이 발생하는 레이더를 이용한 전방차량의 추적 알고리즘을 제안한다.
제조 산업에서 인력은 로봇으로 대체되지만 전문 기술은 데이터 변환이 어려워 산업용 로봇에 적용이 불가능하다. 이는 비전 기반의 모션 인식 방법으로 데이터 확보가 가능하나 이미지 데이터에 따라 판단 값이 달라질 수 있다. 따라서 본 연구는 비전 방법을 사용해 사람의 자세를 추정 시 영향을 미치는 인자를 고려해 정확성 향상 방법을 찾고자 한다. 비전 방법 중 OpenPose의 3가지 모델 MPII, COCO 및 COCO + foot을 사용했으며, CNN(Convolutional Neural Networks)을 사용한 OpenPose 구조에서 얼굴 가림 및 이미지 전처리에 미치는 영향을 확인하고자 액세서리의 유무, 이미지 크기 및 필터링을 매개 변수로 설정했다. 각 매개 변수 별 이미지 데이터를 3 가지 모델에 적용해 실제 값과 예측 값 사이 거리 오차와 PCK (Percentage of correct Keypoint)로 영향도를 판단했다. 그 결과 COCO + foot 모델은 3 가지 매개 변수에 대한 민감도가 가장 낮았다. 또한 이미지 크기는 50% (원본 3024 × 4032에서 1512 × 2016로 축소) 이상 비율이 가장 적절하며, MPII 모델만 emboss 필터링을 적용할 때 거리 오차 평균이 최대 60pixel 감소되어 향상된 결과를 얻었다.
본 논문에서는 기동표적의 위치오차에서 구해지는 가속도를 보상하는 지능형 추적 알고리즘을 소개한다. 관측치와 예상위치와의 차이값은 가속도와 순수잡음으로 분리된다. 이때, 최적의 가속도를 얻기 위하여 퍼지 c-means 클러스터링 기법과 예상명중위치기법이 이용되었다. 분리된 가속도와 잡음에 대한 퍼지 이론의 멤버쉽 함수를 결정되고, 이에 따라 기동표적의 기동특성이 인식되어진다. 분리된 가속도와 잡음은 추적 알고리즘 내에서 추정된 오차값을 보상하는데 이용된다. 표적의 추정값을 계산하는 일련의 과정중 필터링 과정은 기동표적의 비선형성을 선형성으로 인식하게 된다. 이것은 필터가 위치오차에서 가속도를 추출하여 남겨진 잡음만을 인식하기 때문이다. 필터링 과정 이후 추출된 가속도를 보상하여 표적의 추정값을 구해낸다. 제안된 기법은 퍼지 시스템의 멤버쉽 함수에서 파라미터를 조절하여 적응성과 강인성을 향상 시켰다. 제안된 시스템의 효율성을 극대화하기 위하여 제안된 기법을 다중모델 구조로 형성한다. 또한 제안된 기법은 온라인 시스템으로서의 수행이 가능하다. 마지막으로 제안된 알고리즘의 효율성을 보여주기 위하여 몇 가지 예를 추가하였다.
보간법은 기본적으로 원래의 영상을 연속적인 함수 모형으로 나타내고 이 함수로부터 다시 샘플링을 하여 원하는 영상을 얻는 방식으로 접근한다. 본 논문에서는 다른 연속 함수모델보다 진동이 적고 필터 계수가 적은 B-spline 함수를 사용한다. 된 논문의 최적 보간 방법은 원래의 신호와 얻고자 하는 신호를 각각 spline함수로 나타내고, 이 둘의 차이가 가장 작은 것을 선택하는 것이다. 그러기 위해서는 여러 개의 spline계수 중에서 원래 신호와의 L$_2$-norm이 가장 작은 것을 선택해야 한다 이러한 최적 보간법을 일반화하기 위해서 spline 함수로 표현된 신호를 다시 샘플링 하여 신호를 얻고, 그 신호를 공간에 따라 변화하는 spline함수의 합으로 나타낸다. 그리고 이렇게 나타낸 함수들 중에서 원래의 함수와 가장 가까운 것을 선택하도록 함으로써 일반화될 수 있다. 이러한 최적화 된 비정규점 리사이징 알고리즘은 다른 알고리즘에 비해서 더 적은 오차를 나타냄을 확인할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.