• 제목/요약/키워드: 오차 필터링 모델

검색결과 35건 처리시간 0.025초

신경회로망을 이용한 무인헬리콥터의 적응출력피드백제어 (Adaptive Output Feedback Control of Unmanned Helicopter Using Neural Networks)

  • 박범진;홍창호;석진영
    • 한국항공우주학회지
    • /
    • 제35권11호
    • /
    • pp.990-998
    • /
    • 2007
  • 불확실한 비선형 다중입출력 시스템에 대해서 신경회로망을 이용한 적응출력피드백제어기법이 제안되었다. 역변환 기반의 제어입력으로부터 불확실한 비선형성을 분리하기 위해 변형된 운동 역변환 모델(Modified Dynamic Inversion Model, MDIM)이 도입되었다. MDIM은 근사된 운동 역변환 모델과 역변환 모델 오차로 구성되었고 한 개의 신경회로망이 MDIM을 보상하는데 적용되었다. 여기서 신경회로망의 출력은 필터링된 근사오차 기반의 제어기를 증대시킨다. 추적성능과 종국적 유계성(ultimate boundedness)을 보장하기 위해 리야프노프의 직접방법(Lyapunov's direct method)으로부터 유도된 온라인 가중치 적응법칙이 이용되었다. 수치적 시뮬레이션을 통해 본 논문의 타당성을 검증하였다.

공간 기준 디지털 도파관 모델의 지연 특성과 합성음의 음질 (Delay Characteristics and Sound Quality of Space Based Digital Waveguide Model)

  • 강명수;김규년
    • 한국음향학회지
    • /
    • 제22권8호
    • /
    • pp.680-686
    • /
    • 2003
  • 디지털 도파관 모델은 악기의 물리적 모델링에 사용되는 일반적인 방법이다. 디지털 도파관 모델에서 파동의 움직임은 시간 또는 공간을 기준으로 해석 가능하다. 음의 샘플링이 시간을 기준으로 이루어지므로 악기 모델은 시간에 의한 파동의 움직임으로 묘사되는 것이 일반적이다. 본 논문에서는 현에 대한 공간 기준의 디지털 도파관 모델에 악기 몸체 모델을 추가해 악기 음을 합성하였다. 그렇게 함으로써 합성 음의 음질을 향상시키고 악기 모델의 음색 조절 변수들을 효과적으로 처리할 수 있었다. 공간 기준 샘플링에서 현 및 몸체에서 발생하는 미소 지연 오차에 대해 설명하고 FD (Fractional Delay) 필터를 이용해 미소 지연을 처리하는 방법을 보였다. 그리고 지연에 수에 따른 합성음의 변화를 설명하고 그 결과를 시간 기준 디지털 도파관 모델과 비교하였다.

SLR 데이터를 사용하기 위한 효율적인 정밀궤도결정 전략

  • 김영록;박상영;최규홍
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.27.2-27.2
    • /
    • 2009
  • SLR (Satellite Laser Ranging) 데이터의 높은 거리측정 정밀도는 위성 추적 시스템의 검증 및 보정, 위성의 정밀궤도결정, 지구와 관련된 물리 상수 및 모델 검증, 우주파편과 같은 우주물체의 추적 및 감시 등에 활용이 가능하다. 특히 위성의 정밀궤도결정에 SLR 데이터를 활용하는 것은 고정밀 지구관측 위성 및 독자적인 항법 시스템 운영에 필수적인 부분이다. SLR 시스템은 위성 관측 가능 시간 및 지역이 한정되어 있기 때문에 정밀궤도 결정에 활용하는 것이 쉽지 않다. 따라서 이 연구에서는 SLR 데이터를 사용하기 위한 효율적인 정밀궤도결정 전략에 대해서 알아보았다. 동역학 및 관측 모델, 지상국의 개수, 초기 궤도 오차, 필터링 방법, 고도각에 따른 관측 데이터 선택 등의 기준을 선정하고 각각의 경우에 대해 정밀궤도결정을 수행하고 결과를 분석하였다. 정밀궤도결정 테스트를 위해서는 YLPODS (Yonsei Laser-ranging Precision Orbit Determination System)과 SLR정규점 (Normal Point) 데이터를 사용하였다. 이를 통해서 SLR 데이터를 사용하기 위한 효율적인 정밀궤도결정 전략에 대해 고찰해보았다.

  • PDF

S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구 (A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines)

  • 윤마루;박승범;선우명호;이승종
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.

협업 필터링 추천 시스템을 위한 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법 (Hybrid Preference Prediction Technique Using Weighting based Data Reliability for Collaborative Filtering Recommendation System)

  • 이오준;백영태
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권5호
    • /
    • pp.61-69
    • /
    • 2014
  • 협업 필터링 추천은 사용자의 아이템에 대한 선호도를 기반으로 유사 아이템 집합 또는 유사 사용자 집합을 생성하고 이를 이용해 사용자의 특정 아이템에 대한 선호도를 예측한다. 따라서 선호도 행렬이 희박할 경우, 추천의 신뢰도는 급격히 낮아진다. 본 논문에서는 위 문제를 해결하기 위해 데이터 신뢰도 기반 가중치를 이용한 하이브리드 선호도 예측 기법을 제안한다. 선호도 예측은 유사 아이템 집합과 유사 사용자 집합을 모두 생성하고 각 집합을 통해 사용자의 선호도를 예측하며, 모델의 상황을 반영한 가중치를 이용해 각 예측치를 병합하여 수행된다. 이 기법은 사용자 선호도 예측 정확도를 높이며 선호도 행렬 희박도가 높은 상황에도 추천 서비스의 신뢰도를 유지할 수 있도록 한다. 이 기법을 바탕으로 추천 시스템을 구현하고 절대평균오차를 기준으로 서비스 신뢰도 향상을 측정하였다. 실험에서 본 기법은 Hao Ji가 제안한 기존의 기법에 비해 선호도 행렬 희박도가 84% 이상인 상황에서 평균 21.7%의 성능 향상을 보여 효과적으로 행렬 희박도 문제를 해소할 수 있음을 검증하였다.

한국형 위성항법시스템의 UDRE 모니터링 분석 (UDRE Monitoring Analysis of Korean Satellite Navigation System)

  • 박종근;안종선;허문범;주정민;이기훈;성상경;이영재
    • 한국항공우주학회지
    • /
    • 제43권2호
    • /
    • pp.125-132
    • /
    • 2015
  • 본 논문은 한국형 위성항법시스템의 위성궤도, 위성시계 고장 검출이 가능한 UDRE에 대한 모니터링 알고리즘 분석을 수행하였다. UDRE 모니터링을 위한 의사거리 잔차 생성방법 중 대류권 지연오차와 수신기 시계바이어스 추정방법에 대해 새로운 알고리즘을 제안한다. 대류권 지연오차는 국내 기상데이터에 더욱 적합한 Saastamoinen 모델과 Neill 매핑함수의 조합 모델을 사용하였으며, 수신기 시계 바이어스 추정방법으로는 칼만필터를 사용한 기법을 사용하였다. 국내 지역에서 직접 수신한 위성데이터와 기상데이터를 사용한 UDRE 모니터링 분석을 통해 한국지역에 더욱 적합한 UDRE 모니터링 한계치(Threshold)를 도출하고 추 후 한국형 위성항법시스템의 고장검출 기법으로 활용할 수 있을 것으로 기대한다.

Fuzzy Interacting Multiple Model을 이용한 관측왜곡 시스템의 차량추적 (Vehicle-Tracking with Distorted Measurement via Fuzzy Interacting Multiple Model)

  • 박성근;황재필;류경진;김은태
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.863-870
    • /
    • 2008
  • 본 논문에서는 관측왜곡을 포함하고 있는 적응형 순항제어 시스템개발에 필수적인 필터링 방식에 대한 연구를 진행한다. 앞선 차량의 정확한 추적과 의도파악을 위하여 기본적으로 IMM (Interacting multiple model)을 사용하며 관측의 왜곡을 보상하기 위하여 확률적 퍼지 모델을 세안한다. 확률적 퍼지 모델은 기존의 결정형 퍼지모델과 달리 모델링 오차를 확률로 모델링한다. 끝으로 확률퍼지모델과 IMM을 결합한 FIMM (Fuzzy IMM)을 제안하여 관측왜곡이 발생하는 레이더를 이용한 전방차량의 추적 알고리즘을 제안한다.

모션 인식을 위한 2D 자세 추정 알고리듬의 이미지 전처리 및 얼굴 가림에 대한 영향도 분석 (Investigation of image preprocessing and face covering influences on motion recognition by a 2D human pose estimation algorithm)

  • 노은솔;이사랑;홍석무
    • 한국산학기술학회논문지
    • /
    • 제21권7호
    • /
    • pp.285-291
    • /
    • 2020
  • 제조 산업에서 인력은 로봇으로 대체되지만 전문 기술은 데이터 변환이 어려워 산업용 로봇에 적용이 불가능하다. 이는 비전 기반의 모션 인식 방법으로 데이터 확보가 가능하나 이미지 데이터에 따라 판단 값이 달라질 수 있다. 따라서 본 연구는 비전 방법을 사용해 사람의 자세를 추정 시 영향을 미치는 인자를 고려해 정확성 향상 방법을 찾고자 한다. 비전 방법 중 OpenPose의 3가지 모델 MPII, COCO 및 COCO + foot을 사용했으며, CNN(Convolutional Neural Networks)을 사용한 OpenPose 구조에서 얼굴 가림 및 이미지 전처리에 미치는 영향을 확인하고자 액세서리의 유무, 이미지 크기 및 필터링을 매개 변수로 설정했다. 각 매개 변수 별 이미지 데이터를 3 가지 모델에 적용해 실제 값과 예측 값 사이 거리 오차와 PCK (Percentage of correct Keypoint)로 영향도를 판단했다. 그 결과 COCO + foot 모델은 3 가지 매개 변수에 대한 민감도가 가장 낮았다. 또한 이미지 크기는 50% (원본 3024 × 4032에서 1512 × 2016로 축소) 이상 비율이 가장 적절하며, MPII 모델만 emboss 필터링을 적용할 때 거리 오차 평균이 최대 60pixel 감소되어 향상된 결과를 얻었다.

FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계 (Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target)

  • 손현승;박진배;주영훈
    • 전자공학회논문지SC
    • /
    • 제49권3호
    • /
    • pp.82-89
    • /
    • 2012
  • 본 논문에서는 기동표적의 위치오차에서 구해지는 가속도를 보상하는 지능형 추적 알고리즘을 소개한다. 관측치와 예상위치와의 차이값은 가속도와 순수잡음으로 분리된다. 이때, 최적의 가속도를 얻기 위하여 퍼지 c-means 클러스터링 기법과 예상명중위치기법이 이용되었다. 분리된 가속도와 잡음에 대한 퍼지 이론의 멤버쉽 함수를 결정되고, 이에 따라 기동표적의 기동특성이 인식되어진다. 분리된 가속도와 잡음은 추적 알고리즘 내에서 추정된 오차값을 보상하는데 이용된다. 표적의 추정값을 계산하는 일련의 과정중 필터링 과정은 기동표적의 비선형성을 선형성으로 인식하게 된다. 이것은 필터가 위치오차에서 가속도를 추출하여 남겨진 잡음만을 인식하기 때문이다. 필터링 과정 이후 추출된 가속도를 보상하여 표적의 추정값을 구해낸다. 제안된 기법은 퍼지 시스템의 멤버쉽 함수에서 파라미터를 조절하여 적응성과 강인성을 향상 시켰다. 제안된 시스템의 효율성을 극대화하기 위하여 제안된 기법을 다중모델 구조로 형성한다. 또한 제안된 기법은 온라인 시스템으로서의 수행이 가능하다. 마지막으로 제안된 알고리즘의 효율성을 보여주기 위하여 몇 가지 예를 추가하였다.

유클리드norm에 기반한 최적 비정규 리사이징 알고리즘 ($L_2$-Norm Based Optimal Nonuniform Resampling)

  • 엄지윤;이학무;강문기
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2002년도 정기총회 및 학술대회
    • /
    • pp.71-76
    • /
    • 2002
  • 보간법은 기본적으로 원래의 영상을 연속적인 함수 모형으로 나타내고 이 함수로부터 다시 샘플링을 하여 원하는 영상을 얻는 방식으로 접근한다. 본 논문에서는 다른 연속 함수모델보다 진동이 적고 필터 계수가 적은 B-spline 함수를 사용한다. 된 논문의 최적 보간 방법은 원래의 신호와 얻고자 하는 신호를 각각 spline함수로 나타내고, 이 둘의 차이가 가장 작은 것을 선택하는 것이다. 그러기 위해서는 여러 개의 spline계수 중에서 원래 신호와의 L$_2$-norm이 가장 작은 것을 선택해야 한다 이러한 최적 보간법을 일반화하기 위해서 spline 함수로 표현된 신호를 다시 샘플링 하여 신호를 얻고, 그 신호를 공간에 따라 변화하는 spline함수의 합으로 나타낸다. 그리고 이렇게 나타낸 함수들 중에서 원래의 함수와 가장 가까운 것을 선택하도록 함으로써 일반화될 수 있다. 이러한 최적화 된 비정규점 리사이징 알고리즘은 다른 알고리즘에 비해서 더 적은 오차를 나타냄을 확인할 수 있다.

  • PDF